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Abstract—The Linear Quadratic Regulator (LQR) optimal
control problem with linear state equality constraint enforce-
ment is investigated for continuous time-invariant systems. It
is shown that a control vector that complies with a constraint
equation must be composed of two components that act on two
orthogonally complement subspaces of the control space. The
state equality constraint enforcement on the LQR optimal control
policy takes place exclusively by only one of the two components.
Moreover, this component is unique and is independent from the
quadratic cost functional optimization that is performed exclu-
sively by the other component of the control vector. The problem
is reformulated accordingly by directly augmenting the constraint
with the unconstrained system dynamics using the constraint-
enforcing component of the control vector, which reduces the
differential-algebraic form of constrained system dynamics to
an equivalent differential form. The optimal feedback control
law is then obtained by solving a classical matrix algebraic
Riccati equation. The present approach forms a departure
from the Lagrange multiplier technique of augmenting algebraic
constraints with integrands of cost functionals. Application to
partial Eigenstructure assignment on the LQR optimal control
problem is conducted.

I. INTRODUCTION

The continuous-time Linear Quadratic Regulator (LQR) was
introduced by [1] and [2]. Its development was a breakthrough
for multiple-input, multiple-output (MIMO) control systems
because it provided an optimal and systematic manner of
control variables coordination to the MIMO control system.
This “automatic” coordination was missing from the previous
“successive loop-closure” approach to MIMO control system
design, because that approach can easily give results that are
far from optimum, e.g., poorly coordinated controls that fight
each other, thus wasting control authority [3].

Beside alleviating the control variables coordination prob-
lem, LQ regulators and tracking compensators enjoy favorable
inherent robustness characteristics. In particular, the corre-
sponding closed loop systems guarantee gain and phase mar-
gins of at least (—6,c0) db and (-60,60) degrees, respectively,
see, e.g., [4] pp. 383.

Nevertheless, an important extension that has been missing
from the literature of continuous-time LQR is state equality
constraint enforcement on the closed loop control system. Such
an extension is important because many control system per-
formance requirements can be casted in the form of equations
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that involve some or all of the state variables. The endeavour
is taken in this paper to pursue the LQR control law for a
linear time invariant (LTT) system while a linear state-equality
constraint is to be enforced on its closed loop dynamics.

The present approach for solving the state equality con-
strained LQR optimal control problem is based on the obser-
vation that the constraint enforcement is performed exclusively
by one part of the control vector, with no interference from
the other part. The constraint-enforcing part is the component
that acts the range of the transposed coefficient of the control
vector in the constraint equation after evaluating it along the
state trajectories of the LTI system. Moreover, the constraint-
enforcing component is unique and must be independent from
the cost functional optimization, which is performed by the
remaining part of the control vector, i.e., the component that
is in the nullspace of the controls coefficient vector.

Accordingly, generalized dynamic inversion (GDI) of the
algebraic constraint equation is performed using the Greville
formula [S], which is based on the Moore-Penrose generalized
inverse [6], [7]. The GDI closed loop control system exhibits
an advantageous geometric structure [8], [9], which allows
to separate the constraint enforcement control task from the
cost functional optimization task. Moreover, it is shown in
this paper that applying GDI with the LQR optimal control
on a linear system provides an eigenstructure to the closed
loop system. This structure is missing from the LQR closed
loop control system when the LQR is applied in its standard
formulation. The performance of the proposed constrained
LQR control design is illustrated on the control of the lateral
dynamics of a general transport aircraft.

II. LINEAR STATE CONSTRAINT ENFORCEMENT ON LQR
DESIGN

Consider the LTI system in the following state space form

x=Ax+Bu, x(0)=xo (D

where x € R”, u € R™ are the state and control vectors, and
the constant matrices A € R™" and B € R"*™ are the system
and control, respectively. It is assumed that the pair (A,B)
is stabilizable and that the state vector x is fully measurable
and available for feedback. It is required to design a feedback
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control law u(x, ) that minimizes the infinite horizon quadratic
cost functional

J= / (T Ox+ u"Ru)dr 2
0

while forcing the following linear state-constraint on the closed
loop system

Dx=d(1) 3)

where D € R™", and d : [0,00) — R. The state weighting
matrix Q € R"*" in the expression of J is constant nonnegative,
and the control weighting matrix R € R™*™ is constant positive
definite. The pair (A,+/Q) is assumed detectable, and the
function d(¢) is assumed to be at least r-times differentiable,
where r is the relative degree of Dx with respect to u. Hence,
an error variable e is defined as

e=Dx—d(t) “4)
and the following desired error dynamics is prescribed
koe") + ke’ V4 4 ke +ke=0 (5)

where the constants ko,...,k, are chosen such that the equi-
librium point e = 0 of (5) is asymptotically stable. Evaluating
the first r time derivatives of e along the solution trajectories
of (1) yields

DA'x—d"(z) i=1...

(l) 1
e —

i=r
(6)
Substituting (6) in (5) gives rise to the following algebraic
form of the differential error dynamics
Su= PB(x,t) 7
where the controls coefficient o/ € R"™ is
o =koDA""'B (®)
and the controls load % :R" x [0,00) — R is
PB(x,t) = Kix+v(t) )

where the feedback gain K; € R is

Ky =-DY kA (10)
Jj=0
and the feedforward command v : [0,00) — R is
v(t) =Y kd")). (11)
j=0

The GDI control law that enforces the error dynamics (5) is
given by [5]

u=o " B(x,t)+ Pu, (12)
—_— =

eR(&T) EN()

where @/ € R™ in the first (particular) part of the GDI control
law is the MPGI of <7, uniquely satisfying the four Penrose
equations [7], [11] pp. 40

dA T = o (13)
A A At = AT (14)
(Ad N = Aot (15)
(AT )Y = Tt (16)
and is given for the single row vector </ as
%T
gt =, 17
7T a7

The vector o/ maps %(x,t) to R(</T) (range space of
/T, and the null-projection matrix & : R1>™ — R™ ™M in
the second (auxiliary) part of the GDI control law is given by

=@:Im><m_@{+v5y (18)

and it maps the null-control vector u, € R™ to N(<)
(nullspace of <) [11] pp. 374.

It follows from (17) and (18) that &/ %/ ™ =1 and &/ & = 0.
Therefore, multiplying both sides of (12) by .7 recovers the
algebraic constraint given by (7) irrespective of u,. Hence, u,
is arbitrary as for the purpose of enforcing the differential
error constraint given by (5). In particular, this constraint
would be enforced by simply setting u, = 0,,, which gives
the “minimum norm solution” of u, but might render the GDI
closed loop control system unstable. This also implies that
the constraint enforcement is achieved solely by means of the
(unique) particular part of the GDI control law (12), and that
it is independent from the cost functional optimization, which
must take place in N() by means of u,.

Substituting (12) in (1) yields the following GDI control
system

i =Ax+B(F " B(x,t) + Puy). (19)

Notice that because u, is free, only the particular control loop
is closed in (19), and u, parameterizes all LTI control systems
in the form (1) that are constrained by a differential error
constraint in the form given by (5).

The “half-closed” GDI control system (19) is now rewritten
as

x=Ax+B,AB(x,t) +Buuq, (20)

where B, € R™*! and B, € R"*™ are the particular and the aux-
iliary control matrices given by B« and BZ, respectively.
The range spaces R(B,) and R(B,) are related to R(=/T) and
N(«7) by the equations

R(B,) =R(B«/") = BR(«/ ") = BR(/") 1)

and

R(B,) = R(BZ) = BR(Z) = BN(<). 22)

Hence, while B maps a control vector u € R™ to R(B),
B, maps only the projection of u onto R(</T) to R(B),
and B, maps only the projection of u onto N(&/) to R(B).
Nevertheless, because R(=/T) and N(&/) are orthogonally



complement subspaces of R™, it follows that the control space
that is spanned by the columns of B is partitioned into two
control subspaces that are spanned by the columns of B, and
B,. Moreover, evaluating BZBP yields

BB, = #B"Ba/" =0, < BB = Lixm. (23)

Hence, the two control subspace partitions are orthogonally
complements if and only if the columns of B are orthonormals.

The controllability matrix of the particular GDI control
subsystem is given by

C, = [B, AB,---A""'B,] (24)
= [B AB---A""'B|bdiag(/™") (25)
= Cbdiag(<™) (26)

where C € R™™ ig the controllability matrix of system given
by (1), and bdiag(/™) € R™>" is the block-diagonal matrix
that contains /" as each of its block diagonal elements.
The controllability subspace of the particular GDI control
subsystem is

%, = R(C,)=R(Cbdiag(/"))
= CR(bdiag(")).

27)
(28)

Hence, %), that is spanned by the columns of C,, is a subspace
of the controllability subspace % of the system (1), and is
obtained by restricting each of the n block columns of C to
map only the vectors in R(=/T) to €.

Similarly, the controllability matrix of the auxiliary GDI
control subsystem is given by

Co = [Ba AB,---A""'B,] (29)
= [B AB---A""'B|bdiag(2) (30)
= Cbdiag(?) 31

where bdiag(?) € R™*™ is the block-diagonal matrix that
contains & as each of its block diagonal elements. The con-
trollability subspace of the auxiliary GDI control subsystem
is

Ca

R(C,) =R(C bdiag( %))
C R(bdiag(2)).

(32)
(33)
Hence, %, that is spanned by the columns of C, is a subspace
of %, and is obtained by restricting each of the n block
columns of C to map only the vectors in R(Z?) to %

ITII. CONSTRAINED LQR CONTROL DESIGN

Substituting the expression of %(x,t) given by (9) in (19)
yields

X = Ax+B,(Kix+v(t))+ Bautg 34)
= A,x+ Bpv(t) + Baug (35)
SN—— ~~~
€BR(#/T) €BR(Z)

where A., = A+ B,K;. Because v(t) is mapped to R(T),
which is normal to the action space of u,, the dynamics of the
second term is completely uncontrollable by u,. Therefore,

the second term is independent from the cost functional
optimization, and the goal reduces to a classical LQR design of
the null-control vector u, such that the following performance
index is minimized

J= / (xTQx+ uT Ruy)dt (36)
0

where Q € R"™" and R € R™ ™ are such that Q >0 and R > 0,

and subject to the dynamic constraint

X :AcprrBaua. 37

The solution is u, = K,x, where K, = —R~'BTP, and P is the
solution of the algebraic Riccati equation (ARE) [10]

AZPP+PACP —PBR'BTP+0=0. (38)

IV. APPLICATION TO EIGENSTRUCTURE ASSIGNMENT

The LQR compensator is well known for its favorable ro-
bustness characteristics. However, the standard LQR lacks the
eigenstructure assignment property, which makes shaping the
closed loop response in a systematic manner an unreachable
goal, and leaves it to experience and knowledge of the physical
system to determine the quadratic weighting matrices, which
often turns out to become a trial and error procedure.

A few attempts were recorded in the LQR control literature
to equip the methodology with the eigenstructure capability,
e.g., [12], [13], [14]. All these modifications aim to determine
the weighting matrices that yield closed loop systems with de-
sired sets of eigenvalues/eigenvectors. However, iterating be-
tween different weighting matrices deviates from the essence
of optimal control, which aims at optimizing a predetermined
cost functional. An application of the present design in partial
eigenvalue assignment problem is presented.

A. Example 1: Partial Eigenvalue assignment of Lateral Air-
craft Dynamics

The lateral dynamics of a transport aircraft is approximated
by the following state space model

B —10.0 —100.0 11.5 0 B
Pl _jg2| 409 245 0 40| |r
| 0 0 0 1000 | |¢
P ~1604 285 0 —109.3| |p
0 1.8
|02 —24.4|[8,
+10 0 0 5| G9
322 87

where f is the side slip angle, r is the yaw rate, ¢ is the roll
angle, p is the roll rate, §, and &, are respectively the aileron
and the rudder deflections. Hence, the state and control vectors
are defined as x=[B r ¢ p}T and u = [, 6,]T. The
eigenvalues of the system matrix are

A = —1.2308 (40)
Agqg = —0.0806+0.7433i (41)
A, = —0.0464 (42)



where A, is the highly damped first order roll subsidence mode
eigenvalue, A; and A; are the Dutch roll’s oscillatory mode
eigenvalues, and mainly represent lightly damped S and r
oscillations. The eigenvalue A, is the spiral mode eigenvalue,
and is dominated by r. The corresponding set of eigenvectors
is

" 6.7 24.7+33.4i
0.3 17241770
_ -2 o -2
=107 6 g0 Vaa =10 70.1 ’
| 774 5745210
5.0
2
v =107 g9
46

Since A, is almost neutrally stable, it is desired to enhance
the the spiral mode characteristics by removing A further to
the left on the real line. Hence, the following desired yaw
dynamics is prescribed

F—2g,r =0 43)

where Ay, is a desired value of A,. Evaluating the desired yaw
dynamics (43) along the trajectory solutions of the state space
model (39) yields (9), where p =1, m =2, and r(¢) = 0. The
resulting time invariant algebraic equation is

du=Kx (44)
where
o =[—-0.0017 —0.2440] (45)
and
Ky =[—0.4089 0.2454+1,, 0 0.0395]. (46)
Therefore, the GDI control law given by (12) becomes
u=o " " Kix+ Pu, (47)
where T —0.0286
A= g [4.0982] (48)
and 1 0.00
7= {0.007 0 7} “49)

The aircraft’s lateral dynamics after closing the particular part
of the GDI control law is obtained by substituting (47) in (39),
resulting in

X =Ac, X+ Bag (50)
where
AL-p =A +BFK1 =
-6.9 —101.8—7.54,, 115 —0.29
2 0 1004, 0 0
10 0 0 0 100 (1)
—1455  19.5-36.5A,, 0 -110.7

The eigenvalues of A., are

A = —1.2290 (52)
A’d,(i = 0.0260+0.3685i (53)
Ay = lsd. 54)
0.0834 —0.7793F0.2533i
0 0
r=1_08137] Yad = | 0.1903%2.700i | O
1 1
3.7343, +55A5, +58.54;, —1.1265
(182542, ~13.93,, 1474 A,
—502], —58.8547 —3.63;, ~8.39
- - — 56)
Vg (182522, 13.91313 L —T4TA),, (
Ay
1

The second row of A., reflects the enforcement of the desired
yaw dynamics (43) on the feedback control system that is
achieved by closing the particular loop of the GDI control
law, such that the spiral mode is assigned its desired value
ls,,- Moreover, the effects of the roll subsidence and Dutch roll
modes on the time response of r are eliminated as depicted
from the second element of v, and the second elements of v, ;
which are both zeros in accordance to satisfying the constraint
(43), implying spiral mode decoupling.

Closing the particular loop of the GDI control law has also
minor effects on the roll subsidence and Dutch roll modes,
as seen by comparing (40-42) with (52-54). It is noticed for
instance that closing the loop of the particular part of the GDI
control law has very minor effects on stability of the roll and
Dutch roll modes, and it reduces the frequency of the Dutch
roll mode to half of its open loop value. To enhance stability
of the Dutch roll mode, the null-control can be designed using
LQR, for instance to optimize the functional

J— / (x4 uTug)dr. (57)
0
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