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Abstract— This paper aims to make a rigorous evaluation of 
planar discontinuities using a coupling quadripole by estimating 
an accurate value of input impedance being based on a 
homographic relationship. Studied structure is short circuited 
microstrip line to validate the established homographic 
relationship. A parametric study on several characteristics is 
detailed to discuss their effect on quadripole evaluation.  
Keywords— quadripole, coupling, discontinuity, source 

I. INTRODUCTION 

The modelling of the electromagnetic structures being 
based on integral methods [1, 2], it requires the use of a non-
radiating source that will be placed in the circuit plan. The 
localized source is defined on a region of small dimensions 
(compared to the wavelength) in the very same circuit plan. 
Therefore, this source can be considered as a discontinuity 
higher order modes are generated at the transition 
source/circuit [3, 4]. Consequently, calculated impedance 
includes the contribution of evanescent modes at the transition 
source / circuit. It becomes necessary to quantify the 
contribution of higher order modes and analyze them to help 
obtaining more accurate results. 

While input impedance (Ze) seen by the source (S) depends 
on the dimensions of (S) and its nature, its worthy to notice 
that it is different from that seen at the circuit input. Actually, 
Ze is not an accurate representation of real input impedance 
and a correction is necessary [5, 6 and 7]. 

To ensure this operation, Rautio and Harrington [8, 9 and 
10] introduced a capacitor in parallel between the source and 
the access line. But, this modelling of discontinuity 
(represented by a single element) remains insufficient 
especially at higher frequencies. In the current study, we 
consider a quadripole (coupling quadripole). This is expressed 
by means of a homographic relationship. It has the advantage 
of being independent of closing dipole (load at (S2) plan). 
Indeed, for a specified source and an access line, the 
quadripole (QP) would be calculated only once. The change of 
the closing dipole and the source amplitude does not affect the 
quadripole (Qp). 

Besides, this relationship between the impedance Ze, as a 
real value, and the reduced impedance z2 at the circuit input, 
allows us to avoid the concept of characteristic impedance Zc 
= f(ω) which is generally limited to low frequencies. However, 

elements constituting this quadripole depend on the 
dimensions of both source and circuit, the dielectric constants 
and especially frequency. This constitutes an additional 
calculation. But, we show in this paper that for a judicious 
choice of located source, one can define a frequency quasi-
independent quadripole. 

In this paper, we first introduce the homographic 
relationship characterizing the coupling quadripole. We 
expose thereafter the technique employed to determine the 
quadripole parameters. In the last paragraph, we present a 
parametric study on the source characteristics variation on the 
quadripole in order to determine the conditions necessary to 
maintain the same coupling quadripole independently of the 
source and the frequency. 

II. STUDIED STRUCTURE  

 
Fig. 1  Planar dipole excited by a microstrip line 

Figure 1 illustrates the studied structure which is a dipole 
excited by a microstrip short circuited line. By introducing a 
current source, we can calculate the impedance seen by the 
source and deduce the impedance at the input of the circuit 
[11]. 

S1 is a surface completely surrounding the source having a 

normal 1n
��

. 
S2 is a straight section of the microstrip line having a 

normal 2n
���

 oriented towards the load. It will be placed far 

away from the load so that the effect of higher order modes 
thoughtful is attenuated. 
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At S1, a current density  1J
���

 is imposed, it is defined by 

using a unitary source  of amplitude I1, such as: 
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Where,  is the electric field in S1 

The current density 1J
���

 creates on (S2) plan a current 

density and an electric field . 
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Where  and  represent the electromagnetic field of the 
unitary wave on  (S2). 

With :  

III.  HOMOGRAPHIC RELATIONSHIP 

At source, we determine an input impedance Ze and at (S2) 
plan, we measure an impedance z2. This defines the proposed 
quadripole. 

Using the concept of the impedance operator, we can write 
the following relations:  
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We project the first equation of the system (3) by 1J
���

 and 

the second by  .  
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Let: 2 2 2V z I=   

We obtain: 
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 is the input impedance seen by the line, it is expressed 
as a normalized value. Using the two equations (6) and (4), we 
get: 
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     We deduce that the input impedance Ze seen from the 
source is related to the normalized input impedance z2 seen 
from the line by a homographic relationship of the form (8): 

2 1e

B
Z A

Cz
= +

+
                                                              (8) 

Where A and B have the dimension of an impedance, C is 
dimensionless. 

The homographic relationship has the great advantage to be 
independent of the closing dipole since the parameters of this 
relationship (A, B and C) are independent of the load. For a 
given source and a given access line, it is calculated only once. 
Then we can change at will the closing dipole (z2) and the 
amplitude of the source. 

The homographic relationship can be physically interpreted 
using a coupling quadripole to obtain z2 from Ze. Figure 2 
illustrates the equivalent electrical circuit binding the input of 
the line to the load by a quadripole.  

 
Fig. 2  The equivalent electrical circuit 

This quadripole is composed of a parallel element Zp, a 
serial element Zs and a transformation ratio N0 used to bind 
the input impedance Ze in real value to the reduced impedance 
z2. 

Thus, we can overcome the concept of characteristic 
impedance Zc which is a function of the frequency. This is 
interesting due to the non-uniqueness of the definition of  Zc at 
high frequency [12].  

Using the equation (7) and the relationship between the 
elements of a transformer (8), we can identify Zp, Zs and No. 
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Since the homographic relationship already established is 
independent on the closing dipole, the determination of its 
parameters will be evaluated for a simple structure i.e. a 
microstrip short circuited line. Two approximations must be 
respected: first, the structure is considered as a transmission 
line submitted to the line’s fundamental mode (characterized 
by its propagation constant βg). Then, the length L (length 
between the short circuit and the surface S2) should always be 
large enough to assume that higher order modes reflected at 
the level of short circuit are attenuated before reaching S2. The 
expected value of the impedance seen from S2 is given by the 
equation (10). 

2 ( )gz j tg Lβ=                                                              (9) 

With L: length between the short-circuit and the surface S2 
The coupling quadripole (or homographic relationship) 

consists of three unknown elements to be determined by 
measurements of Ze for three line lengths L1, L2 and L3. We 
choose e.g. the values L1, L2 and L3 respectively (3 λg/2), (5 
λg/4) and (11λg/8) which give at the 
plan (S2) respectively z2 value of 0, infinite and j. 

     Finally, this relationship obtained can be used for other 
studies structures and this by replacing the short circuit of 
closing by an open circuit or a more complex discontinuity. 



IV.  DETERMINATION OF INPUT IMPEDANCE (SEEN BY THE 

SOURCE) EXPRESSION (ZE) 

Figure 3 illustrates the planar dipole (Figure 1) short 
circuited in the circuit plan.  

 
Fig. 3  Dipole short circuited: A=12.7mm, b=12.7mm, w=1.27mm, f=8GHz, 
c1=0.5 mm, εr=10, L=49.1 mm 

       To determine the input impedance Ze, we use the Galerkin 
method combined with Generalized Equivalent Circuit. Figure 
4 illustrates the equivalent diagram of planar dipole. 

 
Fig. 4  Equivalent diagram of the planar dipole 

 and  are the admittances operators defined in the basis of 
the TE and TM modes of the box. 
� � � ,
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Where:  

mny  is the impedance of the TE and TM mode. 

The impedance operator �Z  is given by:  
� � � 1

1 2( )Z Y Y −= +                                                                    (11) 

The current source 0J
��

 defined on the source region (S) is 
given by:  

0 00J I G=
�� ��

                                                                          (12) 

The current density eJ
��

 defined on the metal (M) is given by: 
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With ns is the number of test functions at convergence 

The current density eJ
��

 is depicted as an adjustable source, 

because the amplitudes iX  of test functions iG
��

are calculated 

so as to verify the circuit boundary conditions. 

0E
��

 and  are the electric fields respectively defined on the 
source and on the metal. 
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The voltage source is determined as the following inner 
product (17): 

0 0 0|V G E= 〈 〉
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                                                                   (16) 

According to equation (17), we can write: 
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According to the equation (16), we can deduce the following 
system (19) 
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After the resolution of the equation system (18) and (19), we 
have the following equation of the input impedance (20). 
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      The test functions that we choose are of rooftop type 
which are most appropriate for structures having 
discontinuities [13, 14 and 15]. The chosen excitation source 
is echelon (rectangular function). 

 
Fig 5. Echelon Source and  Rooftop test functions 



      The source G01 is echelon defined as follows: 
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       The Rooftop test functions are given by the following 
system (25). 
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      The introduction of a planar excitation in the circuit plan 
allowed us to find a variational form of the input impedance.  
The treatment of this discontinuity problem is brought back to 
the study of an equivalent electrical circuit introducing a 
coupling quadripole. This quadripole allows us to correct the 
value of the input impedance (Ze) and to have the true value of 
the input impedance seen by the line (z2). From the expression 
of homographic relationship, we deduced that this quadripole 
is independent of the load we put it in the plan (S2).  

But, it would be more interesting if we establish the 
conditions on the source in order to maintain the same 
coupling quadripole [10]. We reserve the next paragraph to 
perform a parametric study on characteristic parameters of the 
source. 

V. INFLUENCE OF THE ENVIRONMENT ON THE 

COUPLING QUADRIPOLE 

In this section, we study the effect of the variation of source 
parameters on the coupling quadripole. This study allowed us 
to establish the conditions that we must respect in order for 
the Qp quadripole to remain unchanged regardless of the 
source that satisfies these conditions. A study on the effect of 
variation of the frequency is also performed. 

The parameters of the source that we will be varied: length, 
position, geometric shape and position of the source. 

 
A. Source The effect of the source length 

Figures 6 and 7 show that the length of the source affects 
the quadripole elements Zp, Zs and No. 

 
Fig 6. The effect of source length variation on the quadripole elements Zp and 
Zs 

 

 
Fig 7. The effect of source length variation on No 

Using the two figures 6 and 7, we can notice that the 
length of the source is a very important parameter which must 
be well chosen. For the very small lengths less than 0.02 λg≈ 
λg/50, we have a very great difference compared to other 
values. This can be explained by the fact that a relatively 
small size source tends towards a punctual source. The latter 
is delicate from the point of view of convergence because it 
requires a very high number of test functions and TE and TM 
modes functions. For the dimensions between 0.02 λg and 
0.108 λg = λg /10, we note that we have the same values of Zp, 
Zs and N0 with a maximum relative error of 1.955% = 2%. For 
source lengths greater than λg/10, there is a significant 
difference between the values found. 

So to have the same coupling quadripole, the source length 
must be less than λg /10. 
B. The effect of the source function of the quadripole 

elements 
We have demonstrated in the previous study that when the 

length of the source is less than λg /10, we will have the same 
coupling quadripole. This study is done for a constant function 
source and a rectangular geometric shape. In this section, we 
will vary the source function (constant, triangular, circular and 
sinusoidal) and analyze its influence on our quadripole. 

TABLE I 
THE VALUES OF ZP, ZS AND N0 AS THE FUNCTION OF THE 

SOURCE 

Source Zin1 Zin2 Zin3 Zp Zs No 

Triangle -69,142 205,459 -201,643 205,459 -51,732 0,1413 

Constant -68,391 204,4624 -203,094 204,4624 -51,248 0,1405 

Sinusoidal -70,001 204,2015 -207,897 204,2015 -52,129 0,1401 
Half 
Circle -70,891 206,6539 -202,757 206,6539 -52,783 0,1420 



 
Fig 8. The effect of the choice of the source function on the quadripole 
elements 
Figure 8 and Table 1 show that the choice of the source 
function does not have much influence on the coupling 
quadripole elements. There is a little difference, but it remains 
in the same order with a maximum relative error of 1.06% for 
Zp, 1.71% for Zs and 1.33% for No compared to the constant 
function. This explains the choice of constant source since it 
requires less test and mode functions compared to others to 
achieve the convergence. Table 2 show that the required 
number of test functions for the constant function is 6 against 
13 for sinusoidal function, 11 for circular function 11 and 27 
for triangular function. Similarly, the number of TE and TM 
mode functions is 3400 for constant, 66400 for sinusoidal , 
46200 for circular and 88900 for triangular. 

TABLE III 
FUNCTIONS NUMBER AT CONVERGENCE 

 
C. The effect of the source geometric shape on the coupling 

quadripole elements 

In this section, we take a constant source of dimensions 
less than lambda / 10 but just by varying the geometric shape. 
Figure 9 illustrates the 5 geometric shapes we will be taking: 
triangular with two case, rectangular, half-circle and circle. 

 
Fig 9. Different source geometric shape used 

 
Figure 10 shows that the variation of the source geometric 

shape does not have a big effect on the coupling quadripole 
elements. The maximum error for Zp is 1.079%, for Zs is 
5.024% and for N0 is 1.77% compared to the rectangular 

geometric shape. These error relative values are acceptable. 
The value 5% for Zs, it is logical since it corresponds to the 
circular shape that is more difficult to model than others. 

 

 
Fig 10. Effect of the geometric shape variation on Zp, Zs and N0 

 
D. The effect of the source position on the coupling 

quadripole elements 
     In this section, we took the case where the distance 
between the plan (S2) and the plan (S1) is d1 = λg fairly large to 
avoid the higher modes effect and to be able to vary the source 
position. From Figures 11 and 12, we observe that any 
position lower than 0.17 λg ≈λg/5, we have the same values of 
Zp, Zs and N0. We can interpret this result by the fact that from 
this position begins the effect of higher modes. So, we must 
take into account the distance between the source and the plan 
(S2) where is measured the coupling quadripole in order to 
avoid its effects. 
 

 
Fig 11. Effect of source position on the Zs and Zp impedances  
 

 
Fig 12. Effect of source position on the N0 
 
E. The effect of the frequency on the quadripole elements 

 
      In the previous study, we have focused on the source and 
we deduce that any source of length less than λg / 10 and far 

Source Test function 
number 

Mode function (TE 
and TM) number 

Triangle 27 89800 

Constant 6 34000 

Sinusoidal 13 66400 

Circle 11 46200 



away sufficiently from the plan (S2) gives the same coupling 
quadripole. So, we take a constant source of rectangular 
geometric shape that satisfies these conditions and we vary the 
frequency and analyze its effect on the quadripole elements.  
      Figures 13 and 14 show that for frequencies lower than 9 
GHz, we have the same results for Zp, Zs and N0. From the 
frequency of 9 GHz, the behavior of these three elements is 
completely different. This is explained by the fact that the first 
higher order mode is at frequency 8.7 GHz, which makes this 
behavior expectable. Since we want to avoid the effect of 
higher order modes, we must work within a frequency range 
lower than 8.7 GHz. 

 
Fig 13. Effect of frequency variation on the Zs and Zp impedances 
 

 
Fig 14. Effect of frequency variation on N0  
 

VI.  CONCLUSION 

We have introduced in this paper a quadripole to express 
planar discontinuity in microstrip technology. This quadripole 
is based on homographic relationship characterized and is 
characterized by three elements Zp, Zs and N0. The 
introduction of the coupling quadripole allowed us to correct 
the value of the input impedance (Ze) and to get a more 
accurate value of the input impedance seen by the line (Z2) in 
the normalized value. 

First, we have presented the study structure that is a short-
circuited line having known theoretical input impedance 
which allows us to validate the found input impedance. 

Afterwards we have introduced the homographic relationship 
that makes finding the elements of our quadripole.  

We have detailed the technique used for determining the 
input impedance while using Galerkin method combined with 
generalized equivalent circuit (MGEC). 

In order for this quadripole is calculated only once, we have 
established a study on source parameters and also on the 
frequency to determine the conditions to be met. 

We have deduced that any source having a length less than 
λg/10 and placed at a distance away sufficiently of the plan (S2) 
and for any frequency lower than the first cutoff frequency, 
we have the same coupling quadripole elements with an 
acceptable relative errors. 
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