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Abstract—  It is becoming increasingly important to be able to 

adapt a system's behavior at run time in response to changing 

requirements and environmental conditions. Crucially, the 

adaptation model includes invariant properties and constraints 

that allow the validation of the adaptation rules before 

execution in order to produce a correct system configuration 

that should be executed. The formal methods have proven to 

be useful for making the development process reliable at a high 

abstraction level. Based on this approach, this current research 

proposes a generic process to specify, design, and verify 

Adaptive Real-Time Embedded Systems. This contribution 

uses the formalism Net Condition Event System (NCES) for 

modeling and validating adaptive systems with the model 

Checker SESA. We illustrate the advantages and effectiveness 

of our proposal by modeling and verifying an automotive 

system. 

Keywords- Real-Time Embedded Systems; adaptability; 

Design; NCES; Verification.  

I.  INTRODUCTION 

The design of safe and efficient Real-Time Embedded 
Systems (RTES) is one of the biggest challenges facing 
designers of such systems. These systems are considered 
high-assurance since errors during execution could result in 
injury, loss of life, environmental impact, and/or financial 
loss [1]. The addition of adaptability to RTES further 
hardens and delays their modeling and validating especially 
with the current lack of design models and tools for adaptive 
RTES.  

In our previous work [2], adaptation is defined as any 
modification in the structure, behavior or architecture of the 
system to accommodate external or internal change of their 
operating environment or context and according to 
predefined adaptation plan and rules. In order to specify, 
verify, and validate an adaptive system before its realization, 
it is important to have mechanisms to ensure that the system 
functions correctly during and after adaptations. Model 
checking offers an attractive approach to automatically 
analyzing models for adherence to formal properties. Thus, it 
allows the designer to face the development risks for both 
functional properties and non-functional properties (NFP) 
(such as efficiency, reliability, robustness, stability, and 
vivacity). Indeed, among the existing formalisms, we bet our 
choice on the Net Condition Event System (NCES) [3] 

formalism due to its special sufficiency to support the 
embedded control systems. NCES is modular with extra 
condition/event signals and can be verified using the model 
checking [4]. The possibility of reuse [4] and firing several 
transitions simultaneously, make it more powerful than Petri 
nets [11]. Furthermore, its hierarchical composition allows 
the considerable reduction of the size and complexity of the 
nets. 

In this paper, we propose a new design approach that 
relies on modeling and verifying techniques in order to 
validate complex, adaptive, and critical systems. This 
approach consists in representing the dynamic behavior of 
the system by (i) enumerating the system’s operational 
modes, by (ii) representing mode switches into 
communicating mode automata, and by (iii) specifying 
which of the architecture characteristics are valid or not in a 
given mode. This information is then interpreted in order to 
validate this adaptation specification. Indeed, we consider a 
mode as the abstract definition of a set of functionalities 
provided by a system or a subsystem. When adapting to new 
operational conditions, a system may have (i) to switch from 
a source mode to a target mode, and (ii) to modify the 
software application configuration (e.g. by disabling or 
enabling communication links between components). The 
model validated at design time is used at runtime. In this 
work, as for the formal verification engine, we apply the 
model checker SESA [5] to check NCES-based models of 
components and to verify requirements and functional 
properties. Moreover, SESA allows performing analysis of 
typical properties such as the liveness of transitions and 
boundless of places of the net. It computes also sets of 
reachable states exactly and effectively [5]. 

This work facilitates complex systems modeling, reduces 
the development time and cost and improves software 
process quality. The above benefits have been illustrated 
through the application of the proposed process to an 
automotive case study. 

The outline of this paper is as follows. Section 2, 
provides an overview of the formalism Net Condition Event 
Systems. In section 3 related work is discussed. In section 4 
a presentation of the case study is given. Section 5 gives a 
description of our proposal. Finally, section 6 concludes the 
paper and sketches some future work. 
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II. OVERVIEW OF NCES 

In this section we provide enough information about Net 
Condition Event Systems to understand how we use them in 
our approach. 

Net Condition/Event Systems (NCES) are an extension 
of Petri nets. They were introduced by Rausch and Hanisch 
in [3] according to which a completely composed NCES is a 
Place-Transition Net formally represented as follows: 

 
NCES = (PTN, CN, WCN, I, WI, EN, em)            (1) 

where: 

 PTN : is a classic Place/Transition Net; 

 CN ⊆ (P × T)  is a set of condition signals; 

 WCN : CN ↦ℕ defines a weight for each condition 
arc ; 

 I : ⊆ (P × T)  is a set of inhibitor arcs ;  

 WI : I ↦ℕ defines a weight for each inhibitor arc ; 

 EN : ⊆ (T × T)  is a set of event signals ; 

 em : maps an event-processing mode (AND or OR) 
to each transition.  

 
Each system state is represented by a marking M of the 

net. The notation M(p) denotes the number of tokens in place 
p in marking M. M0 is the initial marking of the net. A place 
p is called a source place of a transition t if there is a 
condition signal from p to t. A transition t' ϵ T is called a 
forcing (resp, forced) transition of transition t if there is an 
event signal from t' to t (resp, from t to t') 

The semantics of NCES are defined by the firing rules of 
transitions [6]. There are several conditions to be fulfilled to 
enable a transition to fire. First, as it is in ordinary Petri nets, 
an enabled transition has to have a token concession. That 
means that all pre-places have to be marked with at least one 
token. In addition to the flow arcs from places, a transition in 
NCES may have incoming condition arcs from places and 
event arcs from other transitions. A transition is enabled by 
condition signals if all source places of the condition signals 
are marked by at least one token. The other type of influence 
on the firing can be described by event signals which come 
to the transition from some other transitions. Transitions 
having no incoming event arcs are called spontaneous, 
otherwise forced. A forced transition is enabled if it has 
token concession and it is enabled by condition and event 
signals. 

III. RELATED WORK 

There have been a number of approaches proposed for 
the modeling and verification of RTES from high level 
models. We will discuss in the following the methodologies 
that particularly deal with high level modeling and 
verification of adaptive RTES, which are still not well 
tackled. 

In [7], authors have benefited from MARTE to model 
reconfigurable architectures such as FPGAs based Systems-
on-Chip (SOC). They extended the MARTE profile with 
some semantics and Xilinx specific concepts, which limits 
their applicability for diverse systems, to support Dynamic 

and Partial Reconfiguration (DPR) of FPGA. The functional 
model is mapped into a hardware accelerator which is 
considered as a reconfigurable region having different 
implementations. Unlike this contribution, we aim to propose 
a process to verifying adaptive systems which is independent 
from any specific platform. 
     In the context of verification approaches, Boukhanoufa et 

al. proposed in [8] an MDE approach for modeling and 

offline validation of application timing constraints. In fact, 

this article uses state machine to represent the application 

configurations and transitions between them to represent 

adaptation rules. This work is based on the generation of all 

possible configurations of a system before running, in order 

to validate timing constraints. The number of configurations 

varies from one system to another and it can be very large, 

this combinatorial explosion makes the timing analysis 

inapplicable. 
In the same vein, [9] have presented a model driven 

framework for the modeling, verification and application 
reconfiguration of multitask networked but only for non-
functional requirements. 

Other efforts have been specifically based on Model 
checking to automatically analyze adaptive software models 
by separating the steady-state program verification from the 
adaptive logic verification. Ramirez et al. present in [10] an 
iterative approach of modeling and analyzing the behavior of 
the adaptation logic through UML state diagrams. The 
adaptive models are analyzed for adherence to both system 
invariants and properties that should hold during adaptation 
through the Spin model checker. Zhang et al. propose in [1] a 
modular model checking approach to verify that a formal 
model of an adaptive program satisfies its requirements 
specified in Linear Temporal Logic (LTL) and A-LTL (an 
adapt-operator extension to LTL), respectively. By 
separating concerns at the model level, they assume that each 
adaptation can be only partial. Unfortunately, the full 
adaptation is difficult to analyze. 

IV. CASE STUDY PRESENTATION   

In this section we present a specific case of study in the 
automotive domain, i.e. the piloting system.  This system is 
considered as a complex and high-assurance RTES, which 
can operate in two operational modes: an automatic mode 
(A) and a manual mode (M).    

The piloting system consists of two sub-systems. A sub-
localization system, that provides the current position of the 
system every ten milliseconds, and a navigation subsystem 
whose behavior is different according to the current mode of 
the system: in automatic mode, the navigation subsystem 
computes the guidance commands when receiving the 
current position of the system from the localization 
subsystem; in manual mode, the navigation computes the 
guidance commands from orders of an end-user of the 
vehicle.  Fig. 1 illustrates the functional model of this 
system.   

 
 
 



Fig 1. System Functional Model. 

The mode automaton of the piloting system is represented 
on the top left corner. It actually defines four modes: A 
represents the automatic mode, M the manual mode, while 
MtoA and AtoM are transitional modes. When the piloting 
system is running in manual mode, there are two possibilities 
to switch to automatic mode (MA). In the first one, the 
switching can be requested by the user. If the localization 
subsystem is off, then the user request is rejected and the 
system returns in mode M. In addition, when the 
communication sub system is disconnected, then the 
transition MMtoA is fired and an adaptation occurs for 
setting the navigation subsystem to mode A. Mode switch 
from A to M is similar, besides the fact that it may occur 
upon a failure of the localization subsystem.  

V. OUR PROPOSAL 

Our approach addresses the problem of safety in the 
design of adaptive RTES. We introduce our process divided 
in two-step optimization to model and analyze an adaptive 
system.  Since, the first consist mainly in modeling the 
behavior of the step and adaptation rules, the second step 
provide a result of analyzing as an output.  More precisely, 
we rely on NCES formalism for the modeling and validating 
of NFPs properties during and after adaptation. The model 
validated at design time is used at runtime. More details for 
each step are mentioned below.  

A. Modeling Adaptive Systems  

At design time, additional information compared to non-

adaptive system, has to be modelled (adaptation rules, 

variability, transitional modes).  In adaptive systems, we 

model all alternatives and possible variations of the system 

elements.  Moreover, our approach is based on the concept 

of mode which is a subset of system features: when the 

system is in a given mode, it provides this subset of features. 

Thus, we propose to represent the system operating modes 

and the conditions that trigger modes and limit changes. For 

instance, we specify using NCES the both operating modes 

of the piloting system (i.e., Manual mode and Automatic 

mode) by specifying the end-to-end scenarios. This 

complements the structural functional of the system cited in 

Fig.1.  We need to build a model for the source mode and a 

model for the target mode. The source and target models 

should not include information about each other, or about 

the adaptation. 

After identifying models, it is necessary to specify 

adaptation rules. These are conditions that should be 

respected during and after adaptation step. In this work, 

each condition C is modelled in his normal form C and 

negative form ¬C and should be linked to source and/or 

target models to fulfil adaptation rules and requirements. In 

addition, event signals are used between models of source 

and target to define transitional modes. Fig. 2 below 

illustrates the modeling of the piloting system through 

NCES formalism. 

Fig 2. NCES Model. 



In the Manuel mode: The initial place input_acquisition 

marked with an initial token corresponding to the launching 

of the run-time scenario. Places without any token at the 

beginning app_cond and ctrl_navigation depict the 

execution of the component manuel navigation. The 

condition of the availability of the communication system is 

modelled in two normal form (comm_actif) and negative 

form (comm_inactif). The Automatic mode is similar, 

triggered by an event signals (i.e., arc flow from t2 to t4). 

Event signals, that fire the initial transition of each mode, 

denote transitional mode with resecting to adaptation rules 

(condition).  

In our approach, a task is considered as being possibly 

impacted by a mode switch if its execution flow depends on 

the value of the current mode. Thus, a mode switch must 

really occur when all the tasks being possibly impacted by 

this mode switch have completed their last execution, and 

none of those threads can restart until this adaptation is 

finished. 

B. Verifying properties  

Once the modeling step is realized, the second stage 
consists of analyzing the net in order to verify and validate 
the non-functional properties. As already mentioned, the 
advantage with NCES-based models is that offers an 
effective and optimal solution to make the verification 
process easier with a low complexity. 

The verification process is to check the vivacity, 
boundedness, detect dead states and transitions using SESA 
tool in order to prove stability, consistency and the 
correctness of an adaptive system. The case study described 
before is verified and discussed below in order to prove the 
consistency and the correctness of the system behavior 
subject to different fault problem cases that can occur. The 
most important checked properties are (1) verify that all 
modes are achievable by verifying liveness of the net, (2) 
verify that during adaptation no deadlock will occur by 
verifying boundedness and (3) the generation of the 
reachability graph prove that the system state are finite, so 
stability can be proved. 

VI. CONCLUSION 

In this paper, we introduced a two-step process to model 
and checking adaptive RTES against their global properties. 
Our process focuses on modeling the behavioral aspect of 
functional and adaptive logic through NCES formalism. As 
source and target models are created, they are automatically 
checked using SESA tool. A key contribution of this 

approach is the ability to verify transitional properties which, 
previously, had not been well tackled. This approach enables 
developers to detect errors in the adaptive logic before 
implementation and deployment. We note the potential for 
improving model checking performance by combining our 
approach with existing techniques. 

As future work, we will investigating strategies to 
combine our approach with others to further reduce the 
complexity of adaptive system model checking and we plan 
to automate as much as possible the implementation model. 
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