
Using NCES for Modeling and Validating Dynamic

Adaptation
Mohamed Naija, Samir Ben Ahmed

Laboratory of Computer for Industrial Systems

Carthage university, INSAT, Tunisia

naija.mohamed@gmail.com

samir.benahmed@fst.rnu.tn

Abstract— It is becoming increasingly important to be able to

adapt a system's behavior at run time in response to changing

requirements and environmental conditions. Crucially, the

adaptation model includes invariant properties and constraints

that allow the validation of the adaptation rules before

execution in order to produce a correct system configuration

that should be executed. The formal methods have proven to

be useful for making the development process reliable at a high

abstraction level. Based on this approach, this current research

proposes a generic process to specify, design, and verify

Adaptive Real-Time Embedded Systems. This contribution

uses the formalism Net Condition Event System (NCES) for

modeling and validating adaptive systems with the model

Checker SESA. We illustrate the advantages and effectiveness

of our proposal by modeling and verifying an automotive

system.

Keywords- Real-Time Embedded Systems; adaptability;

Design; NCES; Verification.

I. INTRODUCTION

The design of safe and efficient Real-Time Embedded
Systems (RTES) is one of the biggest challenges facing
designers of such systems. These systems are considered
high-assurance since errors during execution could result in
injury, loss of life, environmental impact, and/or financial
loss [1]. The addition of adaptability to RTES further
hardens and delays their modeling and validating especially
with the current lack of design models and tools for adaptive
RTES.

In our previous work [2], adaptation is defined as any
modification in the structure, behavior or architecture of the
system to accommodate external or internal change of their
operating environment or context and according to
predefined adaptation plan and rules. In order to specify,
verify, and validate an adaptive system before its realization,
it is important to have mechanisms to ensure that the system
functions correctly during and after adaptations. Model
checking offers an attractive approach to automatically
analyzing models for adherence to formal properties. Thus, it
allows the designer to face the development risks for both
functional properties and non-functional properties (NFP)
(such as efficiency, reliability, robustness, stability, and
vivacity). Indeed, among the existing formalisms, we bet our
choice on the Net Condition Event System (NCES) [3]

formalism due to its special sufficiency to support the
embedded control systems. NCES is modular with extra
condition/event signals and can be verified using the model
checking [4]. The possibility of reuse [4] and firing several
transitions simultaneously, make it more powerful than Petri
nets [11]. Furthermore, its hierarchical composition allows
the considerable reduction of the size and complexity of the
nets.

In this paper, we propose a new design approach that
relies on modeling and verifying techniques in order to
validate complex, adaptive, and critical systems. This
approach consists in representing the dynamic behavior of
the system by (i) enumerating the system’s operational
modes, by (ii) representing mode switches into
communicating mode automata, and by (iii) specifying
which of the architecture characteristics are valid or not in a
given mode. This information is then interpreted in order to
validate this adaptation specification. Indeed, we consider a
mode as the abstract definition of a set of functionalities
provided by a system or a subsystem. When adapting to new
operational conditions, a system may have (i) to switch from
a source mode to a target mode, and (ii) to modify the
software application configuration (e.g. by disabling or
enabling communication links between components). The
model validated at design time is used at runtime. In this
work, as for the formal verification engine, we apply the
model checker SESA [5] to check NCES-based models of
components and to verify requirements and functional
properties. Moreover, SESA allows performing analysis of
typical properties such as the liveness of transitions and
boundless of places of the net. It computes also sets of
reachable states exactly and effectively [5].

This work facilitates complex systems modeling, reduces
the development time and cost and improves software
process quality. The above benefits have been illustrated
through the application of the proposed process to an
automotive case study.

The outline of this paper is as follows. Section 2,
provides an overview of the formalism Net Condition Event
Systems. In section 3 related work is discussed. In section 4
a presentation of the case study is given. Section 5 gives a
description of our proposal. Finally, section 6 concludes the
paper and sketches some future work.

PC
Typewriter
Proceedings of Engineering & Technology (PET)

PC
Typewriter
pp. 721-725

PC
Typewriter
Copyright IPCO-2016

PC
Typewriter
ISSN: 2356-5608

User1
Typewritten Text
3rd International Conference on Automation, Control, Engineering and Computer Science (ACECS'16)

User1
Typewritten Text

User1
Typewritten Text

II. OVERVIEW OF NCES

In this section we provide enough information about Net
Condition Event Systems to understand how we use them in
our approach.

Net Condition/Event Systems (NCES) are an extension
of Petri nets. They were introduced by Rausch and Hanisch
in [3] according to which a completely composed NCES is a
Place-Transition Net formally represented as follows:

NCES = (PTN, CN, WCN, I, WI, EN, em) (1)

where:

 PTN : is a classic Place/Transition Net;

 CN ⊆ (P × T) is a set of condition signals;

 WCN : CN ↦ℕ defines a weight for each condition
arc ;

 I : ⊆ (P × T) is a set of inhibitor arcs ;

 WI : I ↦ℕ defines a weight for each inhibitor arc ;

 EN : ⊆ (T × T) is a set of event signals ;

 em : maps an event-processing mode (AND or OR)
to each transition.

Each system state is represented by a marking M of the

net. The notation M(p) denotes the number of tokens in place
p in marking M. M0 is the initial marking of the net. A place
p is called a source place of a transition t if there is a
condition signal from p to t. A transition t' ϵ T is called a
forcing (resp, forced) transition of transition t if there is an
event signal from t' to t (resp, from t to t')

The semantics of NCES are defined by the firing rules of
transitions [6]. There are several conditions to be fulfilled to
enable a transition to fire. First, as it is in ordinary Petri nets,
an enabled transition has to have a token concession. That
means that all pre-places have to be marked with at least one
token. In addition to the flow arcs from places, a transition in
NCES may have incoming condition arcs from places and
event arcs from other transitions. A transition is enabled by
condition signals if all source places of the condition signals
are marked by at least one token. The other type of influence
on the firing can be described by event signals which come
to the transition from some other transitions. Transitions
having no incoming event arcs are called spontaneous,
otherwise forced. A forced transition is enabled if it has
token concession and it is enabled by condition and event
signals.

III. RELATED WORK

There have been a number of approaches proposed for
the modeling and verification of RTES from high level
models. We will discuss in the following the methodologies
that particularly deal with high level modeling and
verification of adaptive RTES, which are still not well
tackled.

In [7], authors have benefited from MARTE to model
reconfigurable architectures such as FPGAs based Systems-
on-Chip (SOC). They extended the MARTE profile with
some semantics and Xilinx specific concepts, which limits
their applicability for diverse systems, to support Dynamic

and Partial Reconfiguration (DPR) of FPGA. The functional
model is mapped into a hardware accelerator which is
considered as a reconfigurable region having different
implementations. Unlike this contribution, we aim to propose
a process to verifying adaptive systems which is independent
from any specific platform.
 In the context of verification approaches, Boukhanoufa et

al. proposed in [8] an MDE approach for modeling and

offline validation of application timing constraints. In fact,

this article uses state machine to represent the application

configurations and transitions between them to represent

adaptation rules. This work is based on the generation of all

possible configurations of a system before running, in order

to validate timing constraints. The number of configurations

varies from one system to another and it can be very large,

this combinatorial explosion makes the timing analysis

inapplicable.
In the same vein, [9] have presented a model driven

framework for the modeling, verification and application
reconfiguration of multitask networked but only for non-
functional requirements.

Other efforts have been specifically based on Model
checking to automatically analyze adaptive software models
by separating the steady-state program verification from the
adaptive logic verification. Ramirez et al. present in [10] an
iterative approach of modeling and analyzing the behavior of
the adaptation logic through UML state diagrams. The
adaptive models are analyzed for adherence to both system
invariants and properties that should hold during adaptation
through the Spin model checker. Zhang et al. propose in [1] a
modular model checking approach to verify that a formal
model of an adaptive program satisfies its requirements
specified in Linear Temporal Logic (LTL) and A-LTL (an
adapt-operator extension to LTL), respectively. By
separating concerns at the model level, they assume that each
adaptation can be only partial. Unfortunately, the full
adaptation is difficult to analyze.

IV. CASE STUDY PRESENTATION

In this section we present a specific case of study in the
automotive domain, i.e. the piloting system. This system is
considered as a complex and high-assurance RTES, which
can operate in two operational modes: an automatic mode
(A) and a manual mode (M).

The piloting system consists of two sub-systems. A sub-
localization system, that provides the current position of the
system every ten milliseconds, and a navigation subsystem
whose behavior is different according to the current mode of
the system: in automatic mode, the navigation subsystem
computes the guidance commands when receiving the
current position of the system from the localization
subsystem; in manual mode, the navigation computes the
guidance commands from orders of an end-user of the
vehicle. Fig. 1 illustrates the functional model of this
system.

Fig 1. System Functional Model.

The mode automaton of the piloting system is represented
on the top left corner. It actually defines four modes: A
represents the automatic mode, M the manual mode, while
MtoA and AtoM are transitional modes. When the piloting
system is running in manual mode, there are two possibilities
to switch to automatic mode (MA). In the first one, the
switching can be requested by the user. If the localization
subsystem is off, then the user request is rejected and the
system returns in mode M. In addition, when the
communication sub system is disconnected, then the
transition MMtoA is fired and an adaptation occurs for
setting the navigation subsystem to mode A. Mode switch
from A to M is similar, besides the fact that it may occur
upon a failure of the localization subsystem.

V. OUR PROPOSAL

Our approach addresses the problem of safety in the
design of adaptive RTES. We introduce our process divided
in two-step optimization to model and analyze an adaptive
system. Since, the first consist mainly in modeling the
behavior of the step and adaptation rules, the second step
provide a result of analyzing as an output. More precisely,
we rely on NCES formalism for the modeling and validating
of NFPs properties during and after adaptation. The model
validated at design time is used at runtime. More details for
each step are mentioned below.

A. Modeling Adaptive Systems

At design time, additional information compared to non-

adaptive system, has to be modelled (adaptation rules,

variability, transitional modes). In adaptive systems, we

model all alternatives and possible variations of the system

elements. Moreover, our approach is based on the concept

of mode which is a subset of system features: when the

system is in a given mode, it provides this subset of features.

Thus, we propose to represent the system operating modes

and the conditions that trigger modes and limit changes. For

instance, we specify using NCES the both operating modes

of the piloting system (i.e., Manual mode and Automatic

mode) by specifying the end-to-end scenarios. This

complements the structural functional of the system cited in

Fig.1. We need to build a model for the source mode and a

model for the target mode. The source and target models

should not include information about each other, or about

the adaptation.

After identifying models, it is necessary to specify

adaptation rules. These are conditions that should be

respected during and after adaptation step. In this work,

each condition C is modelled in his normal form C and

negative form ¬C and should be linked to source and/or

target models to fulfil adaptation rules and requirements. In

addition, event signals are used between models of source

and target to define transitional modes. Fig. 2 below

illustrates the modeling of the piloting system through

NCES formalism.

Fig 2. NCES Model.

In the Manuel mode: The initial place input_acquisition

marked with an initial token corresponding to the launching

of the run-time scenario. Places without any token at the

beginning app_cond and ctrl_navigation depict the

execution of the component manuel navigation. The

condition of the availability of the communication system is

modelled in two normal form (comm_actif) and negative

form (comm_inactif). The Automatic mode is similar,

triggered by an event signals (i.e., arc flow from t2 to t4).

Event signals, that fire the initial transition of each mode,

denote transitional mode with resecting to adaptation rules

(condition).

In our approach, a task is considered as being possibly

impacted by a mode switch if its execution flow depends on

the value of the current mode. Thus, a mode switch must

really occur when all the tasks being possibly impacted by

this mode switch have completed their last execution, and

none of those threads can restart until this adaptation is

finished.

B. Verifying properties

Once the modeling step is realized, the second stage
consists of analyzing the net in order to verify and validate
the non-functional properties. As already mentioned, the
advantage with NCES-based models is that offers an
effective and optimal solution to make the verification
process easier with a low complexity.

The verification process is to check the vivacity,
boundedness, detect dead states and transitions using SESA
tool in order to prove stability, consistency and the
correctness of an adaptive system. The case study described
before is verified and discussed below in order to prove the
consistency and the correctness of the system behavior
subject to different fault problem cases that can occur. The
most important checked properties are (1) verify that all
modes are achievable by verifying liveness of the net, (2)
verify that during adaptation no deadlock will occur by
verifying boundedness and (3) the generation of the
reachability graph prove that the system state are finite, so
stability can be proved.

VI. CONCLUSION

In this paper, we introduced a two-step process to model
and checking adaptive RTES against their global properties.
Our process focuses on modeling the behavioral aspect of
functional and adaptive logic through NCES formalism. As
source and target models are created, they are automatically
checked using SESA tool. A key contribution of this

approach is the ability to verify transitional properties which,
previously, had not been well tackled. This approach enables
developers to detect errors in the adaptive logic before
implementation and deployment. We note the potential for
improving model checking performance by combining our
approach with existing techniques.

As future work, we will investigating strategies to
combine our approach with others to further reduce the
complexity of adaptive system model checking and we plan
to automate as much as possible the implementation model.

REFERENCES

[1] J. Zhang, H. Goldsby, and Betty H. C. Cheng, “Modular
erification of dynamically adaptive systems”. In AOSD,
2009, pp 161–172, 2009.

[2] M. Naija, J-M Bruel, and S. Ben Ahmed, “Towards a
MARTE extension to address adaptation mechanisms”. In
HASE, 2016, in press.

[3] M. Rausch and H.-M. Hanisch. Net condition/event systems
with multiple condition outputs. In Emerging Technologies
and Factory Automation, 1995. (ETFA), Proceedings
INRIA/IEEE Symposium on, 1995, volume 1, pp 592–600
vol.1.

[4] Z.W. Li J.F. Zhang, M.Khalgui and O.Mosbahi. R-TNCES: a
Novel Formalism for Reconfigurable Discrete Event Control
Systems. IEEE, 2013.

[5] Valeriy Vyatkin. Modelling and verification of discrete
control systems.

[6] M. Khalgui. “Nces-based modelling and ctl-based verification
of reconfigurable embedded control systems”. Computers in
Industry, 2010, 61(3): pp198 – 212.

[7] I-R. Quadri, S. Meftali, and J-L. Dekeyser. "A Model based
design flow for Dynamic Reconfigurable FPGAs".
International Journal of Reconfigurable Computing, 2009.

[8] M-L. Boukhanoufa, A. Radermacher, and F. Terrier. "Offline
validation of real-time application constraints considering
adaptation rules". In Proceedings of the 2011IEEE 10th
International Conference on Trust, Security and Privacy in
Computing and Communications (TRUSTCOM), 2011, pp
974–980.

[9] M-B. Said, N-B. Amor, Y-H. Kacem, M. Kerbo,euf and M.
Abid. "A Model driven approach for the development of fine-
grain self-adaptive multitask and networked RTE systems". In
IEEE 23rd International WETICE Conference, 2014.

[10] Andres J. Ramirez and Betty H. C. Cheng. “Verifying and
analyzing adaptive logic through uml state models”. In ICST,
2008, pp 529–532.

[11] T. Murata, “Petri nets: Properties, analysis and applications”.
In Proceedings of the IEEE, vol. 77, no. 4, pp. 541-580, 1989.

