
Contribution to the Query Optimization in Large 

Databases 
Jaafar Noussaiba

*1
, Hassen Fadoua

#2
, Grissa Touzi Amel

#3
 

*
Signal, Image and Technology of Information Laboratory, National Engineering School of Tunis, Tunis El Manar University, 

BP. 37, Le Belvedere 1002, Tunis, Tunisia  
1
noussaiba.jaafar@gmail.com 

#
Computer, Programming, Algorithmic and Heuristic Laboratory, Faculty of Mathematical, Physical and Natural Sciences of 

Tunis, El Manar University Campus, 2092 El Manar, Tunis, Tunisia 
2
hassen.fadoua@gmail.com 

3
grissa.touzi@topnet.tn 

 

Abstract— In this paper, we propose a contribution to the query 

optimization in large databases (DB). Indeed, it is now very 

important to optimize researches and accelerate queries because of 

the information volume handled in very large databases and the 

operations complexity. The indexing technique is probably one of 

the most used query optimization techniques. However, the 

modeling and the management of indexes require a large memory 

space and an update overhead. Therefore, this technique becomes 

more and more complex in the case of large data volume. We 

propose in this paper a new query optimization approach based on 

the indexing and the classification concepts to make the querying 

results of users faster and provide satisfactory answers. This 

consists in indexing the data groups obtained following a 

clustering algorithm by using Data Mining. To validate our 

approach, we used Oracle as an example of Database 

Management System (DBMS). 

Keywords— Query Optimization; Large Databases; Indexing; 

Classification; Clustering; Data Mining. 

 

I. INTRODUCTION 

The indexing interest is to research and acquire data 

increasingly numerous and complex. Creating indexes 

improves significantly the time for data access by creating 

direct access paths. Several techniques have been proposed in 

this context, we can cite the one-dimensional indexes and the 

multidimensional indexes. Unfortunately, these proposals 

suffer from the large memory space and the cost management 

in terms of index update. 

In this paper, we propose a new query optimization 

approach in large databases based on the indexing and the 

clustering concepts. This approach should allow: 1) an 

optimal search data across the queries, 2) a possible 

implementation whatever the type of DBMS, indexing and 

clustering techniques, 3) a choice of the clustering algorithm 

based on the data field and the user requirements, 4) possible 

modifications according to the type of DBMS. This approach 

has been validated with the Oracle DBMS. 

This paper is organized as follows: Section 2 presents the 

basic concepts of query optimization in DB, indexing and its 

different techniques, and classification with its various 

methods especially the clustering methods. Section 3 is 

devoted to the presentation of our proposed approach. Section 

4 presents our tool developed for the query optimization in 

large DB. Section 5 presents the evaluation of experimental 

results. We end with conclusions and some perspectives. 
II. BASIC CONCEPTS 

A. Query Optimization in Databases 

Optimizing a query is to determine for this query an 

optimum execution plan or scenario leading to minimal 

processing time. It is possible to have several execution 

scenarios for a given query. Therefore, the optimization is the 

choice of the best execution plan. 

The optimization is realized by an essential component in 

relational DBMS, which is the optimizer. Indeed, it 

transforms a query expressed in source language that is the 

Structured Query Language (SQL) in an implementation plan 

composed of a sequence of basic operations expressed in a 

target language and called ‘’low-level’’ effectively 

performing the data access [1]. 

Query optimization is often divided into two phases: the 

logical optimization which can rewrite the query in a 

simplified canonical form and logically optimized, that is to 

say without taking into consideration the cost of access to 

data, and the physical optimization that performs better 

algorithms for low-level operators considering the data size 

and the available access paths. 

To optimize queries, there are data access methods such as 

methods with indexing. 

B. Indexing 

1) Definitions: The index is a data structure which 

optimizes queries to search and acquire information 

on the database. Indeed, this is an auxiliary file, 

structured that makes the access to certain data more 

efficient depending on an index key. Furthermore, 

the index is a sorted system table containing the user 

data to accelerate the processing. 

2) Indexing techniques: Several indexing techniques 

have been proposed. We cite some examples of one-

dimensional indexes and multidimensional indexes.  

 One-dimensional indexes: An index is 

considered to be one-dimensional if the 

data are from a single attribute field. 

PC
Typewriter
ISSN: 2356-5608

PC
Typewriter
Proceedings of Engineering & Technology (PET)

PC
Typewriter
pp. 714-720

PC
Typewriter
Copyright IPCO-2016

mailto:2hassen.fadoua@gmail.com
User1
Typewritten Text
3rd International Conference on Automation, Control, Engineering and Computer Science (ACECS'16)

User1
Typewritten Text

User1
Typewritten Text

User1
Typewritten Text



Among the one-dimensional indexes, we 

cite the hash tables that allow direct access 

to a specific record t based on a function 

called hash function f, and the B-Tree [2] 

which is a linked list of nodes whose value 

is that of the index. It is a search tree on 

several levels which is sorted and balanced. 

The B-Tree offers an excellent compromise 

for the search operations by key and 

interval, as well as updates.  

 Multidimensional indexes: A 

multidimensional space is defined when the 

elements of the considered set are 

homogeneous and heterogeneous vectors 

whose components are totally ordered. The 

multidimensional indexing techniques are 

based on the principle of grouping the basis 

vectors into packets, then to encompass 

them in simple geometric shapes to handle. 

These techniques can be classified into two 

main approaches: data partitioning and 

space partitioning. 

Among the techniques of the data 

partitioning approach, we find the R-Tree 

[3], [4] which is a spatial access method 

used to index the geographic coordinates 

and the SR-Tree [5] that indexes the 

incorporated areas of the intersection 

between a hyper-sphere and a hyper-

rectangle. These methods suffer from the 

problem of the curse of dimensionality, that 

is to say their performances degrade when 

the dimension increases. The major 

drawback of these methods is the overlap 

between the geometric shapes including the 

vectors.  

The space partitioning approach is based on 

the constraint where the intersections of the 

areas are null. The space partitioning 

methods partition the space data in disjoint 

geometric shapes. We cite the following 

techniques: the kD-Tree [6] which is the 

basic structure of all arboreal indexes 

where it is based on the partitioning of a k-

dimensional space according to each of its 

axes, and the pyramid-Tree [7] that 

provides significant performances on disk 

access and response time. There are several 

other methods such as TV-Tree [8], Grid-

File [9] and BANG-File [10]. These 

methods use disjoint geometric shapes 

without overlap, but as the methods based 

on the data partitioning, they suffer from 

the problem of the curse of dimensionality 

where their dimensions are considerably 

degraded by increasing the dimension.  

 Indexing techniques limitations:  

Generally, indexes offer several 

advantages, however they also have 

limitations. In fact, whatever the used 

indexing method one-dimensional or 

multidimensional, we need to store the 

index in a tree or a table. Therefore, using 

indexes require a large storage space for 

their modeling and management especially 

during updates.  

Regarding the multidimensional indexing 

techniques, the curse of dimensionality is 

the major problem affecting the majority of 

multidimensional indexing methods in 

large dimension.  

C. Classification 

1) Definitions: The classification is a main task of the 

Data Mining step. In general, the classification 

consists to group into homogeneous classes a set of 

objects for descriptive or decision-making purposes. 

Therefore, this consists to organize a set of similar 

objects into groups. These groups are the most 

consistent and homogeneous, and called clusters. 

2) Types: The classification is usually divided into two 

groups: supervised classification and unsupervised 

classification. For supervised classification, it is able 

to classify a new object from a set of predefined 

classes by using labeled examples. This approach 

requires the intervention of a human expert to label 

information before their classification. In the 

unsupervised classification methods or clustering, 

classes are not predefined and possible examples are 

not labeled. We are interested in clustering. 

3) Clustering methods: Several clustering methods 

have been conducted. These methods can be divided 

mainly into two categories: hierarchical clustering 

and partitioning clustering. 

 Hierarchical clustering: This consists to 

create a hierarchical decomposition of 

objects according to certain criteria. 

Hierarchical methods generate a sequence 

of nested partitions into each other. The 

arboreal representation of groups is called a 

“dendrogram”.  

 Partitioning clustering: The partitioning 

algorithms are used to build partitions and 

evaluate them according to certain criteria. 

These algorithms provide, as output, a 

partition of the objects space rather than an 

organizational structure of dendrogram 

type. Among the most used algorithms, we 

cite the k-Means algorithm that is simple, 

comprehensible, and the elements are 

assigned automatically to clusters. There 

are several versions of this algorithm such 

as PAM (Partitioning Around Medoids) 

[11] and Fuzzy-k-Means (FCM) [12], [13]. 

III. NEW PROPOSED APPROACH  



We propose a query optimization approach based on two 

main concepts that are the indexing and the classification. 

This consists to apply the indexing on the groups obtained 

after the data classification. Thus, a new concept was born 

which is the concept of “Meta-Index”. Our approach is based 

on two properties: 1) the number of the groups generated 

following a classification algorithm is always significantly 

lower than the initial data 2) all the objects in the same group 

have the same characteristics.  

The general schema of the proposed approach of query 

optimization is presented as following:  

 

 

Fig.1 Principle of the proposed approach of query optimization 

The query optimization process takes place in two main 

related phases. The first phase is the organizational phase 

taking place in two steps which are the classification and the 

indexing. The second phase is the querying phase which is 

presented by the user query and its rewriting by using the 

classification principle.  

A. Organizational phase  

The data organization is the first phase of our approach. 

From the clusters generated following a clustering operation 

on a definite attribute, we create an index on the set of the 

obtained clusters.  

1) Classification step: The first step is to apply the 

classification technique by a clustering 

algorithm. The idea is to group the data in 

similar groups according to a specific criterion.  

2) Indexing step: The second step is presented by 

applying an indexing technique according to the 

chosen DBMS. This consists to index the data 

set which is contained in the generated clusters, 

and not the initial data set. For this, we apply the 

indexing technique on the table containing the 

classified data by choosing the indexing 

attribute. 

B. Querying phase 

The querying is the second phase of this approach. From 

classified and indexed data, we must be able to search for 

responses to satisfy a specific query. This phase allows 

rewriting the user query according to the classification result. 

Therefore, the table becomes the table containing the 

classified data of generated clusters with the corresponding 

attribute.  

C. Validation 

To concretize our approach, we used the Oracle DBMS 

(Oracle 12c) which includes a Data Mining Tool, offering 

clustering algorithms. In addition, Oracle offers several index 

types. We used the B-Tree index and the Enhanced-k-Means 

clustering algorithm that is available in Oracle Data Mining, 

to validate our approach. In what follows, we detail this 

validation in reliance on our database described by the 

following tables:  

Student (stud_id, last_name, first_name, adress, section, year) 

Material (mat_code, mat_name, coeff, section) 

Exam (num_ex, date_ex, coeff, mat_code #) 

Notation (stud_id #, num_ex #, note) 

1) Organizational phase:  

 Classification step: To validate this step, 

we used the Oracle Data Mining tool for 

data classification by applying an algorithm 

among the clustering algorithms proposed 

by this tool. We choose the Enhanced-k-

Means algorithm, which is a hierarchical 

algorithm based on distance. To facilitate 

the work, Oracle Data Mining includes 

Oracle Data Miner, a graphical user 

interface that allows generating, evaluating, 

and applying Data Mining models. 

Example: In this example, our goal is to 

classify students depending on their 

sections; students belonging to the same 

section will be performed to the same group 

or cluster. For this, we proceed as follows: 

At first, we add the data source (Student 

table). Then, we explore the data by 

choosing the classification attribute 

(Section). After, we build the clusters by 

selecting the Enhanced-k-Means algorithm 

and configuring its inputs and parameters. 

Finally, we apply the algorithm. The 

following figure describes the different 

steps of the clustering process with Oracle 

Data Mining. 

 



 

Fig. 2 The different steps of clustering process with Oracle 
Data Mining 

After applying the algorithm, we can 

visualize the result of the generated 

clusters. The result is a table (Figure 3) 

which performs each student to his group 

by specifying the identifier of each cluster 

and the membership probability of each 

element to its cluster. 

 

 

Fig. 3 The clustering result 

 Indexing step: We apply the indexing 

technique on the table of the generated 

clusters. This table is not created 

automatically, but we created it from the 

clustering result by using the generated 

SQL code to facilitate the use of data in 

clusters. Therefore, we can create a B-Tree 

index on the table containing the data 

which are already classified, with Oracle. 

Example: We consider the 

CLUST_SECTION table which represents 

the table that contains the sorted data 

according to the section attribute. We 

create a B-Tree index with non unique 

(having duplicated values in the column) 

and ASC (ascending order for sorting) 

options, on the table containing the 

classified data on the section attribute:  

create non unique index 

SECTION_INDEX on CLUST_SECTION 

(SECTION); 

2) Querying phase: In this phase, the approach must 

answer the user queries taking into account the data 

classification. It is therefore possible to reformulate 

these queries using the table containing the 

classified data and not the initial table (Student).  

Example: We consider the following user query: 

select * from STUDENT where 

SECTION=’Computer’; 

In this case, the query is reformulated with   

‘CLUST_SECTION’ the representative table of 

classified data, and rewritten as follows: 

select * from CLUST_SECTION where 

SECTION=’Computer’; 

The final result will be the answer to this query.  

 

IV. APPLICATION 

We developed a query optimization tool in large databases. 

This tool allows users to seek satisfying answers to their 

queries with optimum time. We implemented our application 

with the Netbeans development environment and we used the 

Java programming language and the JavaFX technology for 

the graphical interfaces.  

We detail afterwards the various steps of our application: 

After authentication, the user can select the corresponding 

database to get access and connect. By selecting a database, 

the user can visualize the contained tables and indexes in this 

database through buttons. 

 

 

Fig. 4 Displaying the tables list and the indexes list 

Across the following interface, the user can process his 

query according to the chosen querying mode: with or 

without clustering. Indeed, the user querying is an 

optimization across the data indexing with or without 

clustering. Whatever the selected mode, the user must seize 

his query by indicating the indexing technique and the 

attribute on which the indexing is carried out. 

 



 

Fig. 5 Configuration of the querying parameters 

The querying result depends on the selected mode. If the 

querying mode is without clustering, the result of the seized 

query is displayed in a table. In addition, the query response 

time will be displayed in seconds. Example: we seize the 

following query: select * from STUDENT where 

SECTION=’Computer’; with the indexing technique is the B-

Tree, and the indexing attribute is SECTION. The result is a 

table full of tuples satisfying the query conditions. Moreover, 

the response time is displayed in seconds. 

 

 

Fig. 6 Querying result without clustering 

By selecting the querying mode with clustering, we obtain 

an interface to choose the clustering algorithm and the 

attribute on which the clustering is performed. 

 

 

Fig. 7 Configuration of the clustering parameters 

The querying result with clustering is represented by the 

resulting sought tuples of the query, the clusters tree and the 

query response time in seconds.  

 

 

Fig. 8 Querying result with clustering 

V. EVALUATION OF EXPERIMENTAL RESULTS 

The general principle used to implement the queries based 

on the application of a clustering algorithm that is Enhanced-

k-Means and the creation of a B-Tree index on the table 

containing the classified data. By executing a query, we 

calculate the response time. Then, we compare the obtained 

response time with that obtained by indexing without 

classifying the data. 
Example: We consider the following query: 

select * from CLUST_SECTION where 
SECTION=’Computer’;  

In this example, we search for all the students in the 

‘Computer’ section. CLUST_SECTION is the table 

containing the classified data. After the clustering operation, 

we create a B-Tree index (the default index in Oracle) on the 

section attribute:  

create non unique index SECTION_INDEX on 

CLUST_SECTION (SECTION); 

The comparison of the response time of the query that 

described above is achieved with the following query without 

clustering:  

select * from STUDENT where SECTION=’Computer’; 

Without forgetting to create the index on the section attribute: 

create non unique index STUDENT_SECTION on 

STUDENT (SECTION); 

By the same manner, we proceed for the other queries. The 

results are described in the figure 9 where it is clear that the 

response time of the queries, which are applied with our 

approach, decreases relative to the indexing approach without 

clustering. We tested these queries with a database containing 

40 tuples. 

 



 

Fig. 9 Comparison of response time of queries with 40 tuples 

We repeat the same process with a database containing 

100 tuples to search results for the same queries made with 

40 tuples. The figure 10 shows the decrease of the response 

time in case of data clustering before the indexing. 

 

 

Fig. 10 Comparison of response time of queries with 100 tuples 

The following figure describes the variation of the 

response time relative to the tuples number in case of 

clustering. We note that by increasing the number of tuples, it 

is not always evident that the response time increases and this 

is due to several factors such as the query complexity. 

Moreover, we can say that our approach remains valid by 

increasing the tuples number to optimize the research. 

 

 

Fig. 11 Variation of the response time relative to the number of tuples 

VI. CONCLUSIONS  

In this paper, we proposed an approach to answer the 

queries for optimizing them in large databases, by using a 

clustering algorithm and an indexing technique. This offers a 

better interpretation and facilitates the queries evaluation. To 

realize this approach, we used the Oracle DBMS. Indeed, we 

represented the generated clusters by the Enhanced-k-Means 

clustering algorithm that is available in the Oracle Data 

Mining tool. Thus, we managed to interpret the clustering 

result to apply the B-Tree indexing technique on the 

classified data.  

Our approach is extensible because users can choose the 

clustering algorithm according to their needs. In addition, it is 

incremental that is possible to make modifications according 

to the used database model. Nevertheless, our approach can 

be further extended by the following perspectives: 1) 

implement other clustering algorithms proposed by Oracle 

Data Mining 2) apply other algorithms implementing the 

fuzzy clustering 3) make additional experiments relying on 

other indexing techniques 4) apply our approach on flexible 

queries. 

REFERENCES 

[1] W. Kim, D. S. Reiner and D. Batory, “Query Processing in Database 

Systems”, Springer Science & Business Media, 2012. 

[2] R. Bayer and E. McCreight, “Organization and Maintenance of Large 

Ordered Indexes”, pp. 245-262, Springer Berlin Heidelberg, 2002. 

[3] A. Guttman, “R-Trees: A Dynamic Index Structure for Spatial 

Searching”, Vol. 14, No. 2, pp. 47-57, ACM, 1984. 

[4] Y. Manolopoulos, A. Nanopoulos, A. N. Papadopoulos and Y. 

Theodoridis, “R-Trees: Theory and Applications “, Springer Science & 

Business Media, 2010. 

[5] N. Katayama and S. Satoh, “The SR-Tree: An index structure for high-

dimensional nearest neighbor queries”, In ACM SIGMOD Record, 

Vol. 26, No. 2, pp. 369-380, 1997. 

[6] J. L. Bently, “Multidimensional binary search trees used for associative 

searching”, Communications of the ACM, Vol. 18, No. 9, pp. 509-517, 

1975. 

[7] S. Berchtold, C. Böhm and H. P. Kriegal, “The pyramid-technique: 

towards breaking the curse of dimensionality”, In ACM SIGMOD 

Record, Vol. 27, No. 2, pp. 142-153, ACM, 1998. 

[8] K. I. Lin, H. V. Jagadish and C. Faloutsos, “The TV-Tree: An index 

structure for high-dimensional data”, The International Journal on Very 

Large Data Bases, Vol. 3, No. 4, pp. 517-542, 1994. 

[9] J. Nievergelt, H. Hinterberger and K. C. Sevcik, “The grid file: An 

adaptable, symmetric multikey files structure”, ACM Transactions on 

Database Systems, Vol. 9, No. 1, pp. 38-71, 1984. 

[10] M. Freeston, “The BANG File: A new kind of grid file”, ACM 

SIGMOD Record, Vol. 16, No. 3, pp. 260-269, 1987. 

[11] L. Kaufman and P. J. Rousseeuw, “Finding Groups in Data: An 

Introduction to the Cluster Analysis”, Vol. 344, John Wiley & Sons, 

2009. 

[12] J. C. Dunn, “A fuzzy relative of the ISODATA process and its use in 

detecting compact well-separated clusters”, Journal of Cybernetics, 

Vol. 3, pp. 32-57, 1973. 

[13] J. C. Bezdek, “Pattern Recognition with Fuzzy Objective Function 

Algorithms”, Plenum Press, New York, 1981. 




