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Abstract— The aim of this work is to evaluate the 

aerodynamic performances of wind turbine airfoils under 
sinusoidal and non-sinusoidal pitching motion. Therefore, two 
dimensional inviscid flow code is developed based on the 
singularity method to predict the oscillatory flow field and the 
aerodynamic propriety of the oscillating airfoil for different 
pitching amplitudes, reduced frequency and airfoil shapes. 
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I. INTRODUCTION  
Wind turbines operate in an unsteady flow environment. So 

the blade element forces result of ambient turbulence, vary 
from element to element. Pitch blade control system is used in 
many commercial wind turbines to optimize the energy 
extracted from the wind. For that many experimental and 
numerical researches have been made into the problem of 
unsteady aerodynamics of oscillating airfoils. 

The dynamic stall phenomena of pitching airfoils have been 
investigated numerically by [1] and [2] using the kω SST 
turbulence model. Symmetric, NACA0012, and non symmetric 
airfoils, S809, have been used to study the sinusoidal pitching 
motion effects on the aerodynamic loads, and the influence of 
the reduced frequency. 

Many experimental studies have been made also to evaluate 
the performances of pitching airfoils. In [3], the experimental 
results show that the lift coefficient present hysteresis loop 
function of the angle of attack and it depends on the pitching 
amplitude and trailing edge separation characteristics. 

For flow over different airfoil sections passing through pure 
plunging motion, Reference [4] uses a 2D incompressible 
Unsteady Panel method (UPM) code. Results showed that the 
variation of the airfoil thickness has a slight effect on thrust 
generation and propulsive efficiency in the considered 
frequency and amplitude ranges ( k = 0.01 – 10 and h = 0.1 – 
0.4). 

The singularity method was applied in many area of research 
such as the prediction of wind turbine performance and the 
design of wind turbine blades [5], [6], and [7].  

In horizontal axis wind turbine case, the instantaneous 
pitching motion of the airfoil can be saw tooth trajectory, 
square trajectory, trapezoidal trajectory or sinusoidal trajectory. 
As seen, the aerodynamic performances of an oscillating airfoil 
depend on parameters related to its motion, such as the reduced 
frequency, the amplitude and the shape of the airfoil trajectory. 
For that we will investigate the influence of the motion on the 
airfoil aerodynamics in case of pure sinusoidal and trapezoidal 
pitching motion. 

In this paper we will describe the singularity method used to 
model the motion of the wind turbine airfoils. The validation of 
the developed tool in the case of pure plunging motion will be 
presented. The method is used to compare the performances of 
two wind turbine airfoils NACA 0012 and NACA 4412 in a 
pure sinusoidal and trapezoidal pitching motion and the effect 
of the reduced frequency and the oscillation amplitude on the 
performance characteristics will be studied.  

II. COMPUTATIONAL MODEL 
The objective of using Panel method is to:  

 Discrete the body surface in terms of 
singularity.  
 Fulfill the necessary boundary conditions.  
 Find the resulting distribution of singularity 

on the surface to obtain fluid dynamic properties of 
the flow.  

The body geometry is represented in terms of smaller 
subunits called panels, is subdivided into smaller subunits 
called panels. Each one is characterized by some kind of 
singularity distribution which can be sources, doublets, or 
vortices. On each panel the singularity order can be constant, 
linear, parabolic, or even higher . It depends on the accuracy, 
computational speed and other factors.  

The panel method is based on the resolution of Laplace’s 
equation Eq.(1). This is through the superposition of simpler 
solutions of elementary flows distributed all over the body. 
This formulation makes the method faster, because it is not 
needed to discrete all the flow domains. The Laplace equation 
is given by: 
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                                                                                                 (1) 
 

The total potential can be described as:        
                                                                                                                                                                          
                                                                                           (2) 
 
Where     is the free stream potential,   is the source 

potential,     is the vortex potential, and      is the wake 
potential. 

The steps of calculation and the detail of the mathematical 
model of the steady state case are discussed in [8]. 

The airfoil surface continues to be described by singularity 
distributions of source strength qj (1…N) and vorticity γ 
inducing (N +1) unknowns as in steady flow. However, for 
unsteady flow, these later are time dependent [9], [10]. 

Assuming that the total circulation in the flow field must be 
conserved, according to Helmholtz theorem, any changes in the 
circulation Γ on the airfoil surface must be adjusted by an equal 
and opposite change in the wake vorticity. This later conducts 
to vortex shedding at the trailing edge of the airfoil. In the 
unsteady panel method, the vortex shedding is described by an 
additional wake element, “the shed vorticity panel” connected 
to the trailing edge with uniform vorticity distribution (γ sh )k 
(fig. 1). 

If the length of the shed vorticity panel is denoted by   Δk  
and its inclination angle to the x-axis by   and the overall 
circulation of the airfoil surface at time step   by    and                                
denoting  the perimeter of the airfoil, then the Helmholtz 
theorem can be considered as: 

 
                                                                                            (3) 
 
                                                                                            (4) 
 
Here       and       represent respectively the overall 

circulation on the airfoil surface and the vorticity strength 
determined at time step        . 

From time step    to        , we assume that the shed vorticity 
panel is detached from the trailing edge and convects 
downstream as a concentrated free vortex, with circulation 
equal to         . The convection velocity of the free vortex is 
given by the local flow velocity at the center of the vortex. 
Meanwhile, a new shed vorticity panel is formed and the 
vortex shedding process is repeated. Consequently, a string of 
concentrated core vortices is formed in the wake behind the 
airfoil as shown in figure 1. 

 

 
Fig. 1. Representation of a smooth airfoil with straight line segments. 

 
Two additional relations are essentials and can be derived 

from the assumptions recommended by Basu and Hancock:  

 The shed vorticity panel is oriented along 
the direction of the local flow velocity at the panel 
midpoint by an angle     . 
 The length of the shed vorticity panel    is 

equal to the product of the local flow velocity at the 
panel midpoint and the size of the time-step. 

 To this point, the two additional relations can be written as 
 
                                                                                          (5) 
      
                                                                                            (6) 
 
where         and        are the flow velocity components at the 

panel midpoint in the x- and y-directions, respectively. 
The flow tangency conditions remains similar to those of 

steady flows illustrted by : 
                                                                                          (7) 
 
Where            is the normal component velocity at midpoint 

of each panel at time step    .  
However, the Kutta condition should now introduce the 

change rate of velocity potential. According to the unsteady 
Bernoulli's equation, the Kutta condition can be expressed by: 

 
                                                                                          (8) 
 
                                                                                          (9) 
 
Where        and         are the tangential velocities 

components at midpoint of the first and Nth panel of the airfoil  
at time step    .          

The unsteady flow of Bernoulli’s equation for the pressure 
coefficients on the airfoil surface must be written with respect 
to the airfoil fixed coordinate system as follow: 
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Where p is the pressure at the midpoint of the panel, U is 

the free stream velocity, streamU is the unsteady stream 

velocity which describes the airfoil motion, totalU  is the total 
velocity resulting from the tangential and the normal 
components and  is the total potential. 

III. RESULTS AND DISCUSSIONS 

A. Validation Case 
The code is validated with the experimental results shown in 

[11] in the case of pure plunging motion in the y-direction 
described by: 

 
The Figure 2 shows a sequence of wake structures at a 

constant reduced frequency equal to 7.86, with the plunging 
amplitude h0=        =0.05. 
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Fig.2 Comparison between experimental results of Lai and Platzer and 
numerical results at k = 7.86 and h0=0.05 

 
Figure 2, compare experimental and numerical results at k= 
7.86 for h0=0.05. We can observe that the our numerical 
results are closely similar to the experimental visualization in 
terms of the significant close large-scale shape of the wake 
characterized by moving in pair vortices downstream. 

 

B. Kenematics 
The parameters that will be considered during the 

investigation of a pitching airfoil are the reduced frequency, 
and the camber of the airfoil. For the numerical modeling in 
this study, the pitching motion is assumed to be sinusoidal for 
S=1 and trapezoidale for S=2 as described in the equation 
below: 
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with    denote the pitching amplitude of the motion and 

ω=2πf is the frequency of oscillation. 
The reduced frequency is the nondimensional rate of airfoil 

motion recurrence. It is defined as  
 
                                                                                        
 
Where c is the chord length, and U

is the freestream 
velocity [3].  Figure 3 illustrates the pitching motion shape 
discribed by the airfoil. 

C. Evaluation Performance  

1) Airfoil camber and reduced frequency effects during 
the pure sinusoidal pitching motion 

To illustrate the effect of the symmetry of the airfoil on its 
aerodynamic performances during the pitching motion, we 

have used two different dissymmetric airfoils: the NACA4412 
and the NACA23015 exploited in the design of wind turbine 
blades and compare their performances with those of the 
symmetric airfoil NACA0012 during pure sinusoidal motion 
for two pitching amplitudes θ0=2° and θ0=5°. 

 

 
Fig. 3 Different Pitch angle shape of the motion 

 
Figures 4 and 5 shows the variation of the lift and drag 

coefficients versus the pitch angle θ with θ0=2° for a 
NACA0012 airfoil for different reduced frequency k=0.1, 0.16 
and 0.2 respectively. 

 

 
Fig.4 Variations of the lift coefficient with the pitch angle θ for the 

NACA0012 airfoil 
 

 
Fig.5 Variations of the drag coefficient with the pitch angle θ for the 

NACA0012 airfoil 
 
We can show that the influence of the reduced frequency is 

more significant on the drag coefficient than on the lift 
coefficient. 

Figures 6, 7, 8 and 9 shows the variation of lift and drag 
coefficients of the dissymmetric airfoils NACA4412 and 
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NACA23015 with pitch angle for different reduced frequency 
k. 

The lift coefficient Cl of the NACA4412 and NACA23015, 
presents the same trend of variation such the lift coefficient of 
the symmetric airfoil NACA0012. The maximum values are 
obtained at the maximum pitch angle and the increase of the 
reduced frequency has not a noticeable effect on the lift loop 
and hysteresis.  

The effect of the reduced frequency is mainly observed on 
the drag coefficients which present one loop and begin 
expanded when increasing k. Furthermore, the increasing of k 
induce an increase in the maximum drag coefficient occurring 
at the maximum angle of attack, 2°, during the upstroke 
motion but this increase in drag has not the same importance 
in the downstroke motion at the minimum angle of attack -2°. 

 

 
Fig.6 Variations of the lift coefficient versus the pitch angle θ for different 

reduced frequency of the NACA4412 airfoil 
 

 
Fig.7 Variations of the drag coefficient versus the pitch angle θ for different 

reduced frequency of the NACA4412 airfoil 
 
To compare the performances of different airfoil shapes, 

Fig.10 shows the variation of the mean thrust coefficient of the 
NACA4412 and NACA23015 airfoils for different reduced 
frequency for θ0=2° and θ0=5° which is defined as: 
                                  
                                                                                              (12) 
 
Cd is the instantaneous drag coefficient and T is the period of 
the motion.  

  In the case of θ0=2°, we can observe that the NACA4412 
airfoil produces the lower drag forces in all cases of reduced 
frequency. However the NACA23015 is the airfoil which 
produces the highest drag forces with increasing the reduced 
frequency k.  

By increasing the pitching amplitude to θ0=5°, the 
difference in the thrust coefficient between the airfoils 

decrease but the NACA23015 is more produced drag force 
than the other airfoils.   

 

  
Fig.8 Variations of the lift coefficient versus the pitch angle θ for different 

reduced frequency of the NACA23015 airfoil 
  

 
Fig.9 Variations of the drag coefficient versus the pitch angle θ for different 

reduced frequency of the NACA23015 airfoil 
 

 

 
Fig.10 Variation of the mean thrust coefficient versus the reduced frequency 

a) pitching amplitude θ0=2° and b) pitching amplitude θ0=5° for the three airfoil 
shapes. 

 
2) Trapezoidal pitching motion 

To demonstrate the effect of the shape of the pitching 
motion on the NACA0012 airfoil, a trapezoidal shape has 
been used for S=2, θ0=5° and reduced frequency k =0.1.  

0
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T

t dC C t dt
T
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The variation of lift coefficient, Cl, versus the pitch 
angle is presented in Fig.11for different values of S 
parameter of the NACA0012. As observed, the shape of 
the lift coefficient changes with the parameter S because 
of the change in the pitching profile. This change in shape 
is not followed by high considerable variation in its value 
and no notable change in lift curve slopes and hysteresis 
loop width. 

 

   
Fig.11 Variation of the lift coefficient of the NACA0012 versus pitch angle 

for S=1 and S=2  
 

To examine the effect of the non-sinusoidal pitching on the 
drag coefficient we present the variation of the drag 
coefficient versus time in Fig.12 and versus pitching angle in 
Fig.13. 

 

 
Fig.12 Variation of the drag coefficient of the NACA0012 versus time for 

S=1 and S=2  
 

 
Fig.13 Variation of the drag coefficient of the NACA0012 versus pitch 

angle for S=1 and S=2  

We can observe that non sinusoidal motion has a great 
effect on the drag coefficient. Furthermore, as S increases the 
drag coefficient hysteresis loops became larger as seen in 
Fig.13. This phenomenon is caused by the change in the pitch 
rate which affects the forces acting on the airfoil. 
 

IV. CONCLUSION 
The singularity is used to develop an unsteady numerical 

code to predict wind turbine airfoil performances in pure 
sinusoidal and trapezoidal pitching motion respectively.  

A comparison between the performances of wind turbine 
airfoil NACA0012, NACA 23015 and NACA 4412 has been 
made with varying of reduced frequency and the pitching 
amplitude. The shape of the motion and the reduced frequency 
are important parameters in unsteady motion and affect airfoil 
aerodynamic performances. 
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