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Abstract—A design of a wavelet-based artificial neural network
(WANN) classifier for a nonlinear wind turbine diagnosis system
is proposed in this paper. This classifier is dedicated to evaluate
residue signals and isolate faults. The WANN algorithm is imple-
mented and tested under three different cases). First, the Discrete
Wavelet Transform (DWT) with the Multi-Resolution Analysis
(MRA) is applied to decompose signals of residues at resolution
levels of the components of the residue signals. Approximation
and details at different resolution levels are used for the artificial
neural network (ANN). Second, the neural network classifier
these details to identify the residue type according to three cases.
The classifier has been tested under different cases events such
as with faulty free, fault 1 and fault 2 scenarios. The simulation
results illustrated that the proposed classifier is able to recognize
and classify signals of residues efficiently and can achieve high
accuracy rate under various test cases.

I. INTRODUCTION

In recent years, the developments of many monitoring and
supervision systems are being developed in order to ensure the
success of planned operations and recognize the behaviorial
problems in the wind turbine process. Among other functions,
detection, diagnose and eliminating faults are crucial tasks of
these systems ensuring the satisfaction of the performance’s
process operations specifications. In addition, the information
supplied by a monitoring system should not only notify the
system operator about what is going on, but also advice him to
assume corrective actions in order to cure the problem [13]. As
a result, three basic aims will be reached: the unavailing time
will be minimized, the system protection will be ameliorated
and the operational costs will be decreased. The process
monitoring can be arranged as sequence of four states : fault
detection, fault isolation, fault diagnosis and fault recovery.

Often, the operator cannot observe the automated changes
from one state to another which is transparent, displaying only
the crucial information to take appropriate action. As a remedy
of this problem, a number of time-frequency domain tech-
niques have been proposed including the short-time Fourier
transform (STFT), the Wigner-Ville distribution (WVD), and
the wavelet transform (WT) have been used [1], [10], [19].

Wavelet theory has turned into one of the signal processing
tool and the emerging and fast-evolving mathematical for its
many distinct benefits [17], [18]. Wavelet analysis affords
a different view of data than those presented by traditional
techniques, like discontinuities in higher derivatives, trends

and breakdown points. Moreover, because of aspects of data
that other signal analysis techniques miss, wavelet analysis
affords without appreciable degradation a denoised signal. The
WT is used to represent all possible types of transients in
signals generated by faults in a wind turbine system.

Newly, applications of the wavelet transform (WT) and
artificial neural network (ANN) in diagnosis fields [21]can
be found in several studies that refer primarily on the sig-
nal processing and classification in different area [20], [21].
Recent advances in the field of neural networks have made
them interesting for analyzing signals. So that, they have been
successfully used in a diversity of diagnosis applications in
wind turbine system [17], [19]. ANNs not only model the
signal, but also make a decision as to the class of signal.

This paper presents an algorithm for classification of signals
based on a combine wavelet transformation (WT) and ANN
classifying techniques. Discrete Wavelet Transform (DWT)
with the Multi-Resolution Analysis (MRA) is applied to
decompose residue signal in approximation and details. The
neural network classifies these details to identify faults.

The paper is structured as follow. The second section is
dedicated for the description of the benchmark model used in
our work. The methodology process is presented in Section
II of this paper. Simulation results of the proposed algorithm
with wavelet decompose and ANN classifications are given in
Section III. Conclusions are given in Section IV.

II. METHOLOGY DESCRIPTION

A. Wavelet transform and multi resolution analysis

The wavelet transform (WT) introduces a useful represen-
tation of a function in the time-frequency domain in order to
analyze signal structures of different sizes [14], [15], [16]. Ba-
sically, a wavelet is a function can be defined as the projection
on the basis of wavelet functions . The Continuous Wavelet
Transformation (CWT) of a signal x(t) can be expressed as:

To(a, b) =
∫ +∞
−∞ x(t) ψa,b(t)dt (1)

with

ψa,b(t) =
1√
a
ψ

(
t− b

a

)
(2)

The ψa,b functions are obtained from the dilating and
translating of the mother wavelet function ψ(t). The dilating
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and translating coefficients, a, b ∈ <, a 6= 0, respectively.
The scale parameter a determines the oscillatory frequency
and the length of the wavelet, and the translation parameter b
determines its shifting position. ψ(t) must have a zero mean
denoted as: ∫ +∞

−∞
ψ(t)dt = 0 (3)

A real wavelet transform is complete and conserves energy
as long as it satisfies a weak admissibility condition. this
condition is given in the next equation whether ψ(t) ∈ £2:

∫

<

∣∣∣ψ̂(t)
∣∣∣

|ω| dω ≺ ∞ (4)

If this condition is satisfied, we can analyze then reconstruct
the signal without loss of information [14].

The WT is designed to address the problem of nonstationary
signals. It involves representing a time function in terms of
simple, fixed building blocks, termed wavelets. These building
blocks are actually a family of functions which are derived
from a single generating function called the mother wavelet
by translation and dilation operations. The main advantage of
the WT is that it has a varying window size, being broad at
low frequencies and narrow at high frequencies, thus leading
to an optimal timefrequency resolution in all frequency ranges.
Furthermore, owing to the fact that windows are adapted to the
transients of each scale, wavelets lack of the requirement of
stationarity. The property of time and frequency localization
is known as compact support and is one of the most attractive
features of the WT. The WT of a signal is the decomposition
of the signal over a set of functions obtained after dilatation
and translation of an analyzing wavelet [14].

In engineering areas, the application of WT usually requires
the discrete WT (DWT)[10], [19], [17]. The DWT is defined
by using discrete values of the scaling parameter a and the
translation parameter b . For better explain, set a = am

0 and
b = nb0a

m
0 then we get ψm,n(t) = a

−m/2
0 ψ(a−m

0 t − nb0),
where m, n ∈ Z. In general cases, we can choose a0 = 2 and
b0 = 1. This choice will present a dyadic-orthonormal WT
and define the basis for multi-resolution analysis (MRA). In
MRA, any time series x(t) can be completely decomposed
in terms of approximations, provided by scaling functions
φm(t) (also called father wavelet) and the details, provided
by the waveletsy ψm(t). The decomposition procedure starts
by passing a signal through these filters. The scaling function
is associated with the low-pass filters (LPF), and the wavelet
function is associated with the high-pass filters (HPF). The de-
composition procedure starts by passing a signal through these
filters. The coefficients Aj and Dj are computed using the
tree decomposition algorithm allowing storing low frequency
information of the signal as well as the discontinuities. In fig.2
HBF, LBF, represent the decomposition filters and ↓ 2 denotes
a down sampling by a factor of 2. Thus, we can conclude that
A1 being the approximate version of the original signal, LBF
behaves as a low pass filter. If D1 contains only high frequency
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Fig. 1. MRA principal

components of signal x(t), then HBF behaves as a high pass
filter. Finally, the signal is decomposed at the expected level.

B. ANN classifier

1) ANN classifier: An ANN is an information processing
paradigm that is inspired by the way biological nervous sys-
tems, such as the brain, process information. Through learning
process, an ANN can be configured for a specific application,
such as pattern recognition or data classification [20], [23],
[22].

The Artificial Neural Networks have parallel structures,
massively distributed, contained neuron which are simple
processing units. These structures draw an analogy of the
human brain due to its ability to acquire knowledge from the
environment[23], [24].

Neural Network application consists of two steps: Training
step and testing step. The network is trained using input data,
and after it is tested. This learning take place through an
adjustment of the connection weights, or synaptic weights,
which exists between neurons. These connections keep the
information obtained by the network.

In literature [20], [23], [22], there are various neural
network architectures, such as radial basis function networks,
Kohonen networks, support vector machine and so many
others.

2) Multilayer Perceptron (MLP): A Multilayer Perceptron
(MLP) is a feed forward neural network model. It maps sets of
input data onto a set of appropriate output. Using three or more
layers of neurons (nodes) with nonlinear activation functions,
the MLP modify the standard linear perceptron. Thence, it is
capable to distinguish data that is nonlinearly separable which
makes it more powerful than the perceptron. In figure (2),the
basic structure of MLP neural network is presented. In one
layer, each node is connected with a certain weight. This
connection is made for every other node in the next layer.
The number of ANN is trained by using different algorithms
like Levenberg- Marquardt algorithm (trainlm), Resilient back
propagation algorithm (trainrp), Scaled conjugate gradient
algorithm (trainscg), etc.

In our work, we use a Multilayer Perceptron (MLP). This
choice is due to its simplicity and applicability. Levenberg-
Marquardt (LMA) is the training algorithm used which is
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Fig. 2. A Multilayer Perceptron Structure

available in mathematical software Matlab.

3) Backpropagation Algorithm: For the training procedure,
an adaptive backpropagation (BP) algorithm is used in two
phases [23]. In the first phase, the inputs are introduced to the
network, which propagate forward to generate the output for
each neuron, yj(t), in the output layer. yj = f(zj) determines
the activity of each neuron, where f(z) = 1/(1 + e−z) the
sigmoid activation function and α and β are constants. Then
the error signal is defined as fellow:

ej(t) = dj(t)− yj(t) (5)

yj(t) is network output, dj(t) is the desired output for neuron
j at iteration t. The BP algorithm changes the weight vector,
ω, of NN so as to minimize the error function, ζ, defined by:

ς(t) =
1
2

∑

C∈j

e2
j (t) (6)

where the C includes all neurons in the output layer. The
correction ∆ωei applied to ωei is defined by:

∆ωei = −β
∂ζ

∂ωei
(7)

Training of the NN is based on an adaptive algorithm with the
parameter β changing. If in (7), ∂ζ\∂ωei = 0, a minimum has
been reached.
The prediction accuracy of the MLP network is based on mean
square error (MSE) which is given by equation (8)

MSE =
1
M

M∑

i=1

(d(i) − y(i))
2

(8)

y(i) is network output, d(i) is desired output and M is
the number of training patterns (input-output pairs). For each
input pair, the output of the network y(i) is compared with the
desired output d(i) by computing the error given by equation
(9):

e = d(i) − y(i) (9)

III. BENCHMARK MODEL DESCRPTION

A. FAST Model descrption

The National Renewable Energy Laboratory (NREL) and
its academic and industry partners have created aeroelastic
simulators for horizontal-axis wind turbines (HAWTs). The
NREL offshore 5-MW 1 baseline wind turbine has two or
three blades [8],[9]. A generator fully coupled to a converter
is used to convert the mechanical energy to electrical energy.
The energy conversion from wind energy to mechanical energy
is controlled by two ways. The first way is by changing the
aerodynamics of the turbine by pitching the blades while the
second one is by controlling the rotational speed of the turbine
relative to the wind speed [3], [5]. The benchmark model for
the wind turbine in this work is the FAST (Fatigue, Aero-
dynamics, Structures, and Turbulence) model.The benchmark
model is detailed in [3]. It is a comprehensive aeroelastic
simulator capable of predicting both the extreme and fatigue
loads of two and three-bladed horizontal-axis wind turbines
[3], [4]. It has five flexible bodies: tower, three blades, and
drive shaft. Table I presents the additional gross properties for
the NREL 5-MW baseline wind turbine model.

TABLE I
GROSS PROPERTIES CHOSEN FOR THE NREL 5-MW BASELINE WIND

TURBINE

Rating 5 MW
Rotor Orientation, Upwind, 3 Blades

Configuration
Control Variable Speed,

Collective Pitch
Drivetrain High Speed,

Multiple-Stage Gearbox
Rotor, Hub Diameter 126 m, 3 m

Hub Height 90 m
Cut-In, Rated

3 m/s, 11.4 m/s, 25 m/s
Cut-Out Wind Speed

Cut-In, Rated Rotor Speed 6.9 rpm, 12.1 rpm
CRated Tip Speed 80 m/s

The aerodynamic of the wind turbine can be represented by,
[4]:

τr(t) =
ρπR3Cq(λ(t), β(t))v(t)3

2ωr(t)
(10)

where Cq is the torque coefficient, ρ is the air density, R is
the radius of blades, v is the wind speed and β is the pitch
angle. It should be noted that the estimation of the τr(t) is
based on measured β(t) and ωr(t) and an estimated v(t).
λ(t) is the tip speed ratio defined as:

λ(t) =
ωr(t)R

v(t)
(11)

The estimation of ρ(t) is affected by an unknown measure-
ment error which is caused by the uncertainty of the wind
speed. We can estimate also this error by means of the error
of the approach described in the next section.

1A single 5-MW wind turbine can supply enough energy annually to power
1,250 average American homes.



Let us consider the nonlinearity represented by the relations
(10) and (11), in which the wind turbine control is exploited.
The model of the drive train is presented by [4]:

ω̇r(t) =
1
J

(τr(t)− τg(t)) (12)

with
τ̇g(t) = pgen(τref (t)− τg(t)) (13)

where τg(t) is the generator torque and τref (t) is its reference.
pg is the generator power. The wind turbine model description
in the continuous-time domain is. :

{
ẋc(t) = fc(xc(t), u(t))
y(t) = xc(t)

(14)

where u(t) = [τref (t), τr(t)]
T and y(t) = xc(t) =

[ωr(t), τg(t)]
T . fc(.) represents the continuous-time nonlinear

function that will be subsequently approximated via discrete-
time fuzzy prototype from N sampled data u(t) and y(t), with
t = 1, 2, ..., N . Lastly, the model parameters and the map Cp

(λ, β) are chosen as given in [4] in order to represent a realistic
turbine.
For the residue generation, sensor faults of the system under
diagnosis are treated based on the data driven measurement for
uncertain sequences u(t) and y(t). A model-based approach
is used to estimate the outputs of the system from a data
drive[1],[2],[6], .

In this work, we consider a techniques based on fuzzy logic
for modeling the nonlinear processes [1], [6], [2]. The fuzzy
identification and modeling is based on ’Takagi-Sugeno’ (TS)
model. This method consists to approximate the non linear
model by local affine models. The decomposition of input-
output data acquired from actual process. We consider this
method of identification to identify the wind turbine non linear
model which is an unknown nonlinear model based on some
available input-output data [7]. The residues r expression is
as fellow:

r(t) = ŷ(t)− y(t) (15)

Where y and ŷ are respectively the output data driven
acquired from the system and its estimated given by the block
of fuzzy identification. The faulty generated signal of the
residue will be treated with a suitable wavelet and artificial
neural network in order to detect fault.

B. Faults descreption

Figure 3 presents the major components of the benchmark
model implemented on Simulink. The feedback loop uses
information from sensors as input to the pitch, torque, and yaw
controllers. Actuator models for the pitch drives, generator,
and yaw drive are implemented within the Simulink environ-
ment. Faults shown in this figure can corrupt both actuators
and sensors. As it has been described in [3], sensors faults
include measurements that are offset from the true values,
stuck, scaled from the true values. In the table II, faults
scenarios are illustrated.

 Pitch and Torque 

controllers 

Yaw 

controller 

Actuator  
Model 

Actuator  
Model 

Wind Turbine 

(Implemented in 

FAST) 

Sensor Models 

Fault detetction  

Subsyetem 

Fig. 3. Block diagram: Fault Detection and Fault Tolerant Control

TABLE II
FAULTS SCENARIOS

Fault Type Time(sec)
Blade root bending moment sensor Scaling 20-45

Accelerometer Offset 75-100
Generator speed sensor Scaling 130-155

Pitch angle sensor Stuck 185-210
Generator power sensor Scaling 224-265

Low speed shaft position encoder Bit error 225-320
Pitch actuator Abrupt change

in dynamics 370-390
Pitch actuator Slow change

in dynamics 440-465
Torque offset offset 495-520

Yaw drive stuck drive 550-575

IV. SIMULATION RESULTS

In our work, we consider the residue of the rotor speed
angular. Using the method of generation residue signals de-
scribed in [1], [2], [7]. Let consider the system 14. The output
of the system is affected by faults scenarios described in
table II. In our case, we consider only fault 5 from table II
and fault 9 for the two scenarios faulty cases . The object
of wavelet analysis is to decompose signals into several
details and approximations. For the analysis of signals using
DWT, two choices are crucial: the selection of appropriate
wavelet and the number of decomposition levels. The number
of decomposition levels is chosen based on the dominant
frequency components of the signal. The level resolution is
given by the next expression:

n = Log2(N)− 1 (16)

where N is the is the number of samples of the signal.
The levels are chosen such that those parts of the signal

that correlate well with the frequencies necessary for classifi-
cation of the signal are retained in the wavelet coefficients.
In this work, Daubechies 4 (db4) is used. Its smoothing
feature was adapted for detecting changes of the residue
signals. Daubechies wavelets are the most popular wavelets
representing foundations of wavelet signal processing, and are
used in numerous applications. A detailed discussion about the
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Fig. 4. Block diagram for classification of residue signals

characteristics of these wavelet functions can be found in the
reference.

The wavelet decomposition is used to diversify and improve
the neural network training signals. An algorithm block dia-
gram for classification of residue signals is presented on figure
(4). The algorithm structure is based on two stages: wavelet
decomposition and multiresolution analysis as the first stage
and classification stage the second one. The input of the second
stage is a preprocessed signal.

In our case, a binary scheme of classification is used to
establish the fault detection condition at the output of the
classifier, namely RN (1 0 0), R1 (0 1 0), and R2 defect
(0 0 1) to denote three classes of the residue. These Data
are used for the step of the ANN training. Only one hidden
layer with different numbers of neurons in hidden layer, nh
= {5,10,15,20,25} are used. The sigmoid activation function
is used in the hidden and the output layer. A mean square
error of 10e−2, a minimum gradient of 1e−10, and maximum
number of epochs of 200 are used. The training process would
stop if any one of these conditions is met. The initial weights
and biases of the network are fixed randomly. The MLP
neural network (MLPNN) has been implemented by using
the MATLAB Neural Network Toolbox. The result of the
learning process of the proposed MLP neural network and
the classification MSE, are depicted in table III.

Table III demonstrates the accuracy of the classifier for
varying number of hidden layer perceptron. As the number
of neurons increases, the execution time increases, but the
accuracy also increases.

TABLE III
ANN ARCHITECTURE AND TRAINING PARAMETERS

nh epoch MSE Gradiant Time(min)
5 60 0.202 0.0518 1.36
10 46 0.193 1.44 1.45
15 65 0.188 9.02 e−5 2.54
22 49 0.186 0.00137 3.45
25 86 0.183 0.00025 9.39

After training, the wavelet- artificial neural network based
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Fig. 5. ANN Outputs for residue signal with no fault
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Fig. 6. ANN Outputs for residue signal with fault1

fault detector and classifier is widely tested using independent
data sets consisting of fault scenarios not used previously for
training the network. Fault scenario and fault location are
changed for various faults in the validation/test data sets in
order to investigate the main effects of these factors on the
performance of the suggested algorithm.

To highlight the proposed network performance, we will try
to inject three cases and see the behavior of the network. This
is presented in the following scenarios. The nominal case with
no fault is considered in the first scenario. Figure 5 shows the
three outputs of the network which given a binary value around
(1,0,0) equivalent to RN .

Scenario 1 for fault 1 is proposed in this example. In this
case, on the contrary of the training date, we change the period
of the fault appearance. The fault takes place between 60 s
and 80 s. Figure 6 shows the three outputs of the network
which given a binary value around (0,1,0) which correspond
to R1 between the period 60 s and 80 s.

In scenario 3, faulty residue signal with fault 2 is presented.
The period of the appearance of the fault is between 115 s and
125 s. Figure 7 shows the three outputs of the network which
given a binary value around (0,0,1) which correspond to R2

between the period 60 s and 80 s.
The suggested network system localize and identify the

source of failures in the proposed cases. DWT/MRA and MLP
architecture is useful for detecting and locating faulty in the
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monitored wind turbine system.

V. CONCLUSION

In this paper, a new approach to develop classifier for
identifying faults in a wind turbine benchmark model is
proposed. This approach is a wavelet-artificial neural network.
As residue signals, generated from a nonlinear system wind
turbine, are non-stationary, the conventional method of anal-
ysis is not highly successful in diagnostic classification. In
this paper, an algorithm for classification of residue signal
based on DWT and ANN has been proposed. DWT with the
MRA is applied to decompose residue signals at resolution
levels of the components of the residue signal. The ANN
classifies these generated signals to identify the fault type
according to a binary output. The accuracy rates achieved by
The results showed that the proposed classifier has the ability
of recognizing and classifying residue signals efficiently.
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