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Abstract— The Removal of noise and restoration of signals has 

been one of the most interesting researches in the field of signal 

processing in the past few year. 
In this paper, we have tested various deconvolution algorithms 

proposed  in   literature,   using   denoised  signal   (by   wavelets 

techniques in our case) instead of measured one which is the real 

signal degraded by measurement procedure.  It is very difficult 

to  compare  algorithms  because  the  results  obtained  depend 

heavily on signal quality (signal-to-noise ratio, sampling), and on 

algorithm parameters and optimizations. Which criteria should 

be used to compare signals? 
Our algorithm which based on Tikhonov-Miller regularization 

and a model of solution, is a iterative algorithm, gives best results 

without artifacts and oscillations related to noise, and achieves 

higher-quality denoising and a high restoration ratio for noisy 

signal than the existing methods. 
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I.   INTRODUCTION 

The Deconvolution methods are used in several electron 
spectroscopies to improve the experimental results which are 
masked  by  instrumental  effects  and  by  physical  processes 
involved  in  the  measurements.  In  Secondary  Ion  Mass 
Spectrometry  depth  profiles,  deconvolution  methods  have 
been  employed  to  approximate  the  measured  composition 
profiles to the supposedly original profiles. 
Secondary ion mass spectrometry (SIMS) is widely used for 
the measurement of doping, impurity and matrix profiles in 
semiconductors.  In  this  application,  the  concentration  data 
required may span 10 orders of magnitude overall, and 4-6 
orders for a particular species [1-3]. 

As the SIMS data do not directly represent the true element 
profile, a data quantification procedure is necessary. Various 
methods from simple linear mapping (ion dose to depth, signal 
to concentration) to deconvolution using response functions of 
various types [3-5]. Due to the complexity of the dynamic 
SIMS  profile  process  and  the  large  record  dynamic  range 
required,  a  very  careful  and  unbiased  treatment  of  the 
measured SIMS data is vital to the success of a deconvolution 
method to be used. 

The  deconvolution  of  depth  profiling  data  in  SIMS 
analysis amounts to the solution of an appropriate ill-posed 
problem in that any random noise in data leads to no unique 
and  no  stable  solution  (oscillatory  signal  with  negative 
components,  which  are  physically  not  acceptable  in  SIMS 
analysis). Thus, the results must be regularized. Our algorithm 
based on the Tikhonov-Miller regularization [6]. 
In this study, we evaluate a few well-known deconvolution 
algorithms and their modifications . specific attention is given 
to the comparaison of the deconvolution based on measured 
profiles and other based on denoised profiles. 
The simplist approach to deconvolution is the inverse filtering 
in which the discrete Fourier Transform (DFT) of the true 
signal is estimated. This approach leads to excessive noise 
amplification. Another linear approach is based on the linear 
Wiener   Filtering.   Therefore,   other   classes   of   iterative 
deconvolution techniques will studied. 
 

II.  EXPERIMENTAL 
Secondary-ion mass spectrometry (SIMS) is a technique 

used  to  analyze  the  composition of solid  surfaces  and thin 
films by sputtering the surface of the specimen with a focused 
primary ion   beam and   collecting   and   analyzing   ejected 
secondary ions. 
When  acquiring  a  depth  profile,  the  secondary  ions  are 
emitted  discontinuously.  It  is  the  control  electronics  that 
manages  the  counting  of  the  secondary  ions  striking  the 
detector,  and  this  is  done  discretely over  time.  The  SIMS 
signals are thus discrete signals of finite duration. In this case, 
the transformation of a continuous signal into a discrete signal, 
that is to say the sampling problem, does not arise. The SIMS 
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signals  will  therefore  be  treated  as  discrete  signals  their 
continuous equivalent does not exist. 
In the most frequent case, the linear system which degrades 
the source signal x (t) is a low-pass filter. The high attenuation 
of the high frequencies of this signal makes the observation of 
noise  not  negligible.  This  noise  by  additive  hypothesis,  is 
introduced   by   the   sensors   and   electronic   circuits   of 
amplification. Like any measurement system, SIMS has an 
equation that governs the system, which is as follows: 

adequate filter in such a way that a deconvolved profile is 
found as near as possible to the input signal X (f) sought. 
Therefore, we search  the filter F (f) such as : 

(4)  
is the estimate of the signal sought and which must 

be close to the real signal X (f) in the least squares sense, 
which leads us to minimize the quantity: 

(5) 

 
Where 

 
is the original signal, 

 
(1) 

is the blur operator, n is 

Finally, the optimal Wiener filter:  
(6) 

a vector representing the unkown perturbations such as noise 
or measurement error, and is the observed signal, 
respectively. 

 
By going through a Fourier transform, convolution becomes a 
product, so the convolution equation becomes as follows: 

 
(2) 

With H, X, B represent the Fourier transforms of   ,   , and n 
respectively. 

 
However,  in  some  cases,  the  source  signal  x  (t)  is  also 
subjected to a multiplicative noise, in this case the noise can 
not   be   dissociated   from   the   source   signal   x(t)   in   the 
deconvolution problem, because it is an integral part of it. 

 
Under  these  conditions,  an  a  priori  denoising procedure  is 
necessary  before  the  implementation  of  a  deconvolution 
procedure, otherwise the result will be aberrant. This point is 
the core of our digital processing of SIMS signal. 

 
A.  Resolution of the convolution equation in  presence of 

noise: Wiener Filtering 
In the case where the noise is absent in the convolution 

equation, the term Y (f) / H (f) is strictly equal to X (f) if the 
inverse of convolution obviously exists. With the presence of 
noise, an inversion could also be performed in the Fourier 
domain, but the starting data has changed. Indeed, the system 
h(t)   is   a   low-pass   filter   and   the   multiplication   by   its 
convolution inverse will therefore have the same effect as the 
application  of  a  high-pass   filter,   which   will   cause   the 
amplification of the high frequencies of Noise ratio resulting 
in a signal embedded in the noise. 
By dividing the two members of equation (2) by H(f), we 
obtain : 

(3)  
is an estimate of X(f) obtained by dividing by 

H(f). The equation above shows that noise is important here: 
is composed of the real profile X(f) to which is added the 

noise N(f) strongly amplified by the term H-1(f). This equation 
shows  us  that  the  noise  takes  on  its  importance  here. 
Therefore, has  a  "saturated"  noise  spectrum  in  high 
frequencies, and its image in the time domain is a highly 
oscillatory and unusable signal. 

Note  that  in  the  expression  of  the  Wiener  filter,  the 
resolution  function  H  does  not  appear  explicitly,  which 
implies that it is not necessary to know it to define the optimal 
Wiener  filter.  However,  it  is  necessary to  discriminate  the 
share of the  useful  signal and the  share of noise, but this 
discrimination   constitutes   the   core   of   the   problem   of 
deconvolution in the presence of noise. Since it is difficult to 
obtain the expression of the noise in the measured data, it is 
therefore  necessary to  employ noise  estimation techniques. 
A first estimation consists in calculating the power spectral 
density  of  the  noisy  signal,  based  on  the  PSD  plot,  it  is 
possible to estimate roughly the part of the noise and the part 
of the useful signal while trying several signal-to-noise ratios 
(SNR  )  And  choose  the  one  that  gives  a  better  solution. 
However, this estimate remains relative, because for some the 
parts  of  the  signal  considered  as  part  of  the  noise  are 
considered  a  useful  signal  for  the  others.  So  this  method 
contains a certain degree of subjectivity. 

The decomposition of the signal on a wavelet basis gives 
us a robust and objective estimate of the noise. Nevertheless, 
the  Wiener  filter  is  a  fast  method  and  is  always  a  first 
approximation of the solution of the deconvolution problem. 
 
B.  Resolution of  discrete convolution equation: direct 

deconvolution 
After the implementation of the matrix formalism of the 

convolution equation, we will now see the resolution of this 
problem in its new context. The estimate of the solution will 
have the following expression: 
 

(7) 
 
If the matrix H has very small eigenvalues, which during the 
inversion will give large values thus amplifying the  noise, 
which  can   lead   to  unacceptable  solutions  due  to  their 
instability. 
Indeed, the noise of measurement only worsens the ill-posed 
character   of   the   problem.   Under   these   conditions   the 
uniqueness of the solution will be difficult to guarantee. As a 
result, for the same measured signal, it is possible to construct 
several different input signals. 
 
C.  Reverse filtering and least squares solution 

This  approach  is  the  basis  of  the  other  deconvolution 
The solution is therefore the application of a filter on the methods: we seek a solution   such that is as close as 

deconvolved signal, such that this amplification of the high 
frequencies will be minimized. It is then appropriate to find an 

possible to y in the least squares sense. We must minimize the 
following quantity: 
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(8) 
 

The least squares solution is: (12) 

(9) 
 

However, if is badly conditioned, is even more so, 
the solution is therefore highly degenerate and may have no 
physical  significance.  There  is  not  only  one  solution  that 
satisfies the proximity condition of the reconstructed signal 
and the measured signal. 

 
D. Filtering In least squares sense under constraints: 

Regularization 
Different  forms  of  regularization  are  proposed  in  the 

literature, each being more or less adapted according to the 
field   of   application   [6-8].   We   were   interested,   to   the 
regularization of Tikhonov-Miller. 
The  matrix H characterizing the problem of deconvolution 

 
 
 
With and are, respectively, the approximation signal 
and the detail thresholded signal, α: regularization parameter, 
D:  regularization  operator,  H:  matrix  constructed  from  the 
impulse response h, Y: vector constructed from the measured 
signal. 
 

III. RESULTS AND DISCUSSION 
The results of the deconvolution of the sample MD4 (four 

delta layer) in linear and logarithmic scales are illustrated in 
this section. These results clearly show the importance of the 
idea   of  denoising   the   measured   signal   before   using   it 
subsequently in signal processing techniques. We benefit of 

before  regularization  is  replaced  by  the  matrix better each technique proposed in the literature. 
conditioned. This is done by modifying the eigenvalues of the 
system H.  We  see  that  the  solution involves  not 
which is unstable but . 
The  problem of solving a  linear  system is therefore  made 
more stable, and the solution more acceptable [8]. 

Really, this case of profile (delta layer profiles) is the most 
difficult in terms of restoration because the spectrum is rich in 
high frequencies that limit the quality of the final solution. 
 

Measured profile 
Deconvoluted profile 

E.  Introduction of the solution model in  regularization 
Barakat   et   al   [9]   proposed   an   extension   of   the 

regularization   Tikhonov-Miller by introducing a term 
representing  an  a  priori  information  model.  This  model 
translates   the   local   properties   of   the   signal   such   as 
discontinuities, homogeneous zones, etc. 
The solution sought becomes : 

(10) 
 

F.  Iterative methods 
 

The  unstable  character  of  the  deconvolution  in  the 
presence of noise may also require the choice of a method 
which converges step by step towards a single solution and 
where it is possible to control at each step this convergence. 

Van Cittert was one of the first to propose an iterative 
method to solve this problem [10]. Based on the fixed point 
method,  the  solution  in  step  k  +  1  is  obtained  from  the 
solution obtained in step k: 

 
(11) 

 
In our work, we adopted an iterative method based on 

the  barakat’s  approach,  with  as  a  solution  model  a  signal 
decomposed previously on a wavelet basis. It is a denoised 
signal and reconstructed by retaining only the approximation 
coefficients and the thresholded coefficients of detail. 
For more information see [8]. 
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The mathematical formulation of this approach, in the Fourier 
space, is as follows: 

 
Fig. 1 Results of deconvolution of MD4 by direct inversion of the convolution 

equation, linear scale representation ( DRF: λd = 47.8 ; λu = 10.55 ; 
σg = 26.3): a) Using mesured signal, b) using denoised signal 
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Fig. 1 show an example of deconvolution by direct inversion 
of the convolution equation of a measured profile of boron in 
silicon.  It  shows  that  the  shape  of the  deconvolved  signal 
using a denoised signal is better than that of the measured 
signal, as well as a minimization of the oscillations, especially 
in the junctions between the delta doping. 

Fig. 2 illustrates results of the solution of Reverse filtering 
and least squares solution. There is still a good improvement 
in the shape of the deconvolved signal and a minimization of 
the oscillations and artifacts in the second case (Fig. 2-b), thus 
improving the gain in resolution and peak’s maximum, but it 
is not sufficient to best define the actual profile. 
We must therefore define criteria on the solution sought in 
order  to  limit  the  number  of  solutions  to  those  that  are 
physically acceptable. This modification of the specification 
of  the  problem  of  deconvolution  is  widely  used  in  signal 
processing, and is designated under the name of regularization 
or least squares filtering under constraints. 
In the regularization of Tikhonov-Miller, the regularization 
term refers only to the solution sought, and this in a global 
way, that is to say that the property that one wishes to impose 
on x applies throughout its interval of definition , Without 
distinguishing the different zones of the signal. 

concluded that noise is totally eliminated, As well as a modest 
improvement in the gain in resolution. The precision of the 
solution will depend directly on the precision of the model 
brought. 
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Fig. 3 Results of deconvolution using Barakat’s approch, linear scale 
representation, ( DRF: λd = 47.8 ; λu = 10.55 ; σg = 26.3)  

As any method discussed in this work, the  Van Cittert 
algorithm  know  a  remarkable  development  of  the  form 
resulting  mainly  to  the  low  level  of  the  resulting  signal 
(Fig. 4). 
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Our algorithm is the result of several algorithms proposed 
in past years in this field, it is a iterative algorithm, based on 
Tikhonov-Miller  regularization.  Where  a  priori  model  of 
solution  is  included.  The  latter  is  a  denoisy  and  pre- 
deconvoluted signal obtained by wavelets shrinkage algorithm. 
It is shown that this new algorithm gives best results without 
artifacts and oscillations related to noise. 
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Fig. 2 Results of the solution of reverse filtering and least squares solution, 
linear scale representation: a) Using mesured signal, b) using denoised signal  

Fig.  3  show  result  of  deconvolution  using  Barakat’s 
approach. In this case, we have chosen as a solution model a 
signal  previously  decomposed  on  a  wavelet  basis.  It  is 
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good result, just as the improvement of the instrumentation 
remains a privileged way towards the ultimate improvement 
of the depth resolution. The deconvolution is in addition to the 
instrumental performances and allows to derive the maximum 
resolution   of   an   experimental   profile.   Moreover,   when 
deconvolution is implemented, every element involved in the 
calculations must be taken into account, since deconvolution 
is a delicate operation and should not be implemented without 
precautions, otherwise, we can obtain Aberrant results, such 
as  non-existent   structures   in  reality  or  results  that  are 
mathematically   correct,   but   physically   unrealistic.   This 
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necessitates a good control of the restitution process and its 
mechanisms. Among the elements to be taken into account,we 
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d) 

find the following: 
• Application a denoising technique such as wavelets which is 
powerful tool in signal processing. 
• Choice of the form that fit the DRF as well as the choice of 
the parameters of the DRF itself. 
•  Application  of  hard  constraints  (constraint  of  positivity, 
support, amplitude ...) and soft (regularization), as well as the 
choice of regulation parameters. As well as the right choice of 
the solution model, if it exists to the deconvolution algorithm. 
• Type of the applied algorithm (iterative or non-iterative). 
The iteration number in the case of an iterative method is very 
important (criterion for stopping the algorithm). 
 

REFERENCES 
[1] C.  Palacio,  and  J.  M.  Martinez-Duart,  ―Deconvolution  Methods 

Fig. 4 Results of iterative methods deconvolution, ( DRF: λd = 47.8 ; 
λu = 10.55 ; σg = 26.3): a) By Van-cittert Algorithm & using mesured signal, 

linear scale representation, b) By Van-cittert Algorithm & using denoised 
signal, linear scale representation, c) multiresulotion deconvolution, linear 

scale representation, d) multiresulotion deconvolution, logarithmic 
representation 

When  studying  a  phenomenon  using  a  wide  range  of 
values, the linear scale is ill suited. It is preferred to use a 
logarithmic   scale   that   separates   the   low   values   and 
approximates the strong values. It may be preferable in this 
case since it shows oscillations and artefacts in a remarkable 
way. Deconvolution of this sample (Fig. 4-d) resulted a great 
improvement  of  the  depth  resolution  and  recovery  of  the 
original shape of the signal. The exponential slopes have been 
completely  removed  giving  symmetrical  peaks  and  well 
separated. 

 
IV. CONCLUSIONS 

This paper presents a state of the art review of published 
research papers   and   reports   that   interested   in   signal 
processing techniques. We show the utility of each one. we 
are interested in the idea of denoising,  of the signal from the 
measure, as a first step of treatment before applying other 
techniques of digital signal processing. 
In  the  SIMS  analysis,  deconvolution  will  not  make  an 
instrument  of  poor  quality  excellent,  we  can  refine  the 
physical resolution of it. In other words, better have a "good 
instrument"  than correct  a  bad  one! In any case,  it  is  not 
desirable to apply the deconvolution to a concentration profile 
acquired under poor conditions. The quality and reliability of 
the initial measurement remains the essential condition for a 

Applied to Sputter Depth Profiles at Interface,‖ Thin Solid Film, vol. 
105, pp. 25–32, 1983. 

[2] D. P. Chu, M. G. Dowsett, and G. A. Cooke, ―Characterization of 
Noise in Secondary Ion Mass Spectrometry Depth Profiles,‖ COND- 
mat/9610061v1 [cond-mat-mtrl-sci., 1996. 

[3] Y.N.Drozdov, M. N. Drozdov, A.V. Novikov, P. A. Yunin,  and D. V. 
Yurasov,  ―Layer-by-layerAanalysis  of Structures  Containing  delta- 
layers by Secondary Ion Mass Spectrometry Taking into Account the 
TOF-5 Depth Resolution Function,‖ Journal of Surface Investigation.,  
vol. 6, No. 4, pp. 574–577, 2012. 

[4] P. A. Yunin, Y. N. Drozdov, M. N. Drozdov, and D. V. Yurasov, 
―Recovery  of  SIMS  depth  profiles  with  account  for  nonstationary 
effects,‖ Applied Surface Science., vol. 307, pp. 33–41, 2014. 

[5] M. G. Dowsett, G. Dowlands, P. N. Allen, and R. D. Barlow, ―An 
analytic form for the SIMS response function measured from ultra thin 
impurity layers,‖ Surface and Interface Analysis., vol. 21, pp. 310–315, 
1994. 

[6] M.  Boulakroune,  ―Reliability  of  multiresolution  deconvolution  for 
improving  depth  resolution  in  SIMS  analysis,‖  Applied  Surface 
Science., vol. 386, pp. 24–32, 2016. 

[7] T. Kilian Huckle,  and M. Sedlacek, ―Tikhonov-Phillips Regularization 
with  Operator  Dependent  Seminorms,‖  DOI  10.1007/s11075-012- 
9575-9, Springer , , pp. 339-353, 2012. 

[8] M. Boulakroune, ―Advanced in Wavelet Theory and Their Applications 
in  Engineering‖,  Physics  and  Technology,  Edited  by  Dr.  Dumitru 
Baleanu, ISBN 978-953-51-0494-0, 634 pages, In Tech, 2012. 

[9] V.  Barakat,  B.  Guilpart,  R.  Goutte,  and  R.  Prost,  ―Model-based 
Tikhonov-Miller   image   restoration,‖   Proceeding   of   International 
Conference on Image Processing, Vol. 1, pp. 310–313, Santa Barbara 
CA, 1997. 

[10] G. Mancina, ―Amélioration de la résolution en profondeur de l’analyse 
par SIMS par déconvolution : Algorithmes spécifiques et application 
aux couches dopées ultra-minces de la microélectronique 
silicium,   ‖ Thèse   de   doctorat,   Institut   National   des   Sciences 
Appliquées de Lyon, 183 p, 2001. 

C
on

ce
nt

ra
ti

on
 (

at
 /c

m
3)

 
C

on
ce

nt
ra

ti
on

 (
at

 /c
m

3 )
 


