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Abstract— This article introduces a robust tracking control method specifically designed for wheeled mobile robot
(WMR), which tackles various sources of uncertainty such as wind disturbances and slipping. By applying the principles
of the differential flatness methodology, the inherently under-actuated dynamics of WMR are transformed into a more
manageable linear canonical form, facilitating the development of a stabilizing feedback controller. To effectively handle
uncertainties arising from wheel slip and wind disturbances, the proposed feedback controller incorporates sliding mode
control (SMC). However, the escalation of uncertainties may intensify chattering phenomena within the SMC framework,
attributable to increased control inputs. To address this issue, a boundary layer surrounding the switching surface is
introduced, implementing a continuous control law aimed at mitigating chattering effects. The stability properties of the
closed-loop system are established using Lyapunov theory. Comprehensive numerical simulations are performed on a
WMR system to evaluate the effectiveness and performance of the proposed control strategy.
Index Terms—Differential flatness, Sliding mode control, Wheeled mobile robot.

I. INTRODUCTION

Robotic systems are complex machines designed to interact with their environment autonomously or under human
control. They consist of mechanical components, sensors, actuators, and computational algorithms. These systems use
artificial intelligence and advanced algorithms to perceive their surroundings, make decisions, and execute tasks
efficiently.

Recently, wheeled mobile robots have significantly expanded their applications, streamlining tasks and enhancing
efficiency in industrial logistics [1], healthcare [2], agriculture [3], and surveillance [4]. Their adaptability and
versatility make them vital across various domains, fueling ongoing advancements in automation and productivity.
However, due to the diverse applications of wheeled mobile robots, precise control algorithm design is crucial,
considering the non-linearity of their kinematic models. This complex challenge piques the interest of numerous
researchers, underscoring the importance and relevance of this field.

In the past few decades, significant progress has been achieved in the field of tracking control for WMR through the
application of nonlinear control theory. Among these methodologies, linearization controllers, such as the flatness
controller [5], have emerged as a popular approach, greatly simplifying the controller design process. The flatness
property is a technique used to characterize the dynamic behavior of nonlinear underactuated models by identifying a
set of fundamental system variables known as flat outputs. Achieving flatness enables the expression of both the
system’s state and input variables as functions of the flat outputs and their derivatives, eliminating the necessity for an
integration process. Moreover, flatness control converts the nonlinear model into the canonical Brunovsky form [6],
simplifying the concept of a feedback controller capable of achieving precise trajectory tracking. The ease of
controlling a linear system in contrast to an underactuated nonlinear system has motivated researchers to employ the
principles of flatness in the planning and tracking of trajectories for robotic systems. In [7], a technique for generating
optimal trajectories is presented, employing the transcription method, flatness, and b-spline curves. As a result, the
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utilization of flatness enables a decrease in the number of variables in trajectory optimization, leading to improved
computational efficiency. Moreover, in [8], Helling combined flatness with a predictive control strategy to achieve
real-time trajectory tracking for underactuated marine surface vehicles. Additionally, Salah [9] developed a method
for generating upper coverage trajectories for mobile robots, taking advantage of the benefits offered by flatness.
There is always a difference between the mathematical model describing the movement of WMR and reality. This
difference is due to environmental phenomena neglected during modeling, such as wind and slipping. The question
that arises is how flatness control applied to WMR can ensure the accurate tracking of a desired trajectory despite the
presence of uncertainties.

To resolve this problem, a robust feedback controller must be combined with flatness, taking into account the impact
of uncertainties on the model. Up to the present, there have been limited methods in the literature concerning the
robustness issues of flatness systems. Among these approaches, sliding mode control (SMC) has been successfully
utilized in a variety of systems [10], [11].

SMC is a robust control technique employed to handle dynamic systems amidst uncertainties and disturbances.
Fundamentally, SMC aims to steer the system state onto a predetermined sliding surface within the state space. Once
the system resides on this surface, its behavior becomes constrained, facilitating effective regulation. SMC achieves
this by employing discontinuous control actions, referred to as switching control, which dynamically alternate
between different control laws. This switching mechanism ensures that the system remains on the sliding surface,
enhancing robustness against external influences. However, despite its effectiveness, SMC is associated with a
phenomenon called chattering, characterized by rapid switching between control actions near the sliding surface.
While chattering can theoretically improve tracking accuracy, it can lead to practical issues such as mechanical wear
and high-frequency oscillations. To address this problem, numerous approaches have been suggested in the existing
literature, such as high-order SMC [12], boundary layer techniques [13], and the active adaptive continuous
nonsingular terminal sliding mode algorithm [14]. A frequently utilized approach for mitigating the chattering
phenomenon involves incorporating the boundary layer technique within SMC. The primary contribution of this
article lies in leveraging the simplicity provided by the flatness control concept and the robustness achieved through
the integration of boundary layer SMC to establish a high-performance and resilient tracking controller for WMR.
This design aims to address the challenges posed by wheel slip and wind disturbances.

Initially, the paper emphasizes the role of flatness control in converting a WMR into a linear canonical and decoupled
form, thus laying the groundwork for the development of a stabilizing feedback controller. Subsequently, it introduces
a robust feedback control approach based on boundary layer SMC to ensure precise trajectory tracking despite the
presence of uncertainties.

The rest of this article follows this structure: Section 2 offers a thorough examination of the flatness control technique
for WMR. The detailed description of the proposed robust tracking controller can be found in Section 3. Section 4
introduces and analyzes the simulation results. Lastly, Section 5 concludes the paper by summarizing the main
findings and suggesting potential future avenues of research.

Il. FLATNESS-BASED TRANCKING CONTROL

In our study, we analyzed a differential two-wheeled mobile robot (Fig. 1) that consists of two independent active
wheels and a third passive wheel. This robotic system is widely regarded as an effective trade-off between control
ease and the degrees of freedom that enable the robot to meet mobility requirements.

The configuration of the mobile robot with wheels can be described by the vector g, = [x, y, 6]. In this notation, x and
y represent the coordinates of the robot’s center position in the stationary frame (O, X, Y), while 0 represents the
orientation angle of the robot. The state equation of the WMR kinematic model, neglecting uncertainties, is represented

as follows:
x = cos(O)v
y = sin(Qv 1
0=
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The robot’s translational and rotational velocities are denoted by v and w respectively. The angular velocities of the
right and left wheels (w, and w;) can be defined as functions of the robot’s translational and rotational velocities as
follows:

o= (22, @

o= (52 E

77X
Fig 1. Two-wheeled mobile robot

The variables r and 2b represent the radius and distance between the wheels, respectively. The non-holonomic
limitation is defined as follows, based on the non-slip requirement:

xsin@— ycosd=0 4

The accuracy of the tracking will be guaranteed through the flatness property, which involves describing all system
states and inputs, as well as their finite time derivatives, within the framework of a flat output. Considering the
following nonlinear system:

x = f(x,u) (5)
where x ER™ and u € R™ represent the state and the input vector.

The nonlinear system (5) is differentially flat if there exists an output A in the following form:

A= E(x,u,u ',....,u(c)) € R™ (6)

such that the state and the input can be expressed as follows:
x=k; (A4, 1. 2D) )
u =K, A .., A@+D) (8)

where a and c are finite multi-indices, and &, k; and k, are smooth vector functions of the output vector A and its
derivatives. The flatness property permits us to calculate diffeomorphism and feedback linearization, which transforms
the nonlinear system into a controllable linear system where the flat outputs depict the state vector.

Several studies in the literature, including ryu [15], have shown that the WMR kinematic modeling can be defined as a
differentially flat model, where the positional coordinates denoted as A = [1 44, 1 5117 =[x, y]” serve as the flat
outputs. Therefore, the entire set of state and control components pertaining to the WMR system are expressed using
the flat variable A and its derivatives, as demonstrated below:
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A
0= arctan == C))
11

v = /ifl + 13, (10)

i Ay = A A
B+ 2,

(11)

The differentially flat nature of the WMR’ s kinematic model has been demonstrated in the literature by various
researchers [15]. This implies that all the states and controls of the kinematic WMR model can be expressed as
functions of A and its derivatives. However, the non-invertible relationship between the control input vectors w and v
and the highest derivatives of the flat output limits the development of static feedback linearization for the nonlinear
WMR. To address this constraint, we incorporate the control input v into the kinematic model Equation (1) by treating
it as an additional state. As a result, we obtain a revised system that can be defined as follows:

x = cos(@)v

y = sin(6)v (12)
V= Uy
6= Up2

The state and control inputs of the modified system defined by Equation (12) are represented by X, = [x,y,v, 6 17
and u,, = v and u,, = w. In order to establish a bijective relationship between the inputs u,, u,,, and higher-order
derivatives of a;; = x, a;; = y, we apply successive differentiations to the flat outputs until at least one of the input
variables appears in the resulting expressions, as illustrated below:

A u
[--11] rob r1 (13)
121

Where B, is described as follows:

_[cos(8) —v sin(@)]
rob [sin(@) v cos(6) (14)
The matrix B,,p, is not singular if v # 0. In this case, we can define the control as follows:
url 1 A1
urz - rob [121] (15)

To arrive at the linearized system, referred to as the Burnovsky Form (BF), we can substitute the control input (15) into
equation (13). This substitution yields the following modified expression:

1_11 =112 1'21 = A2
(BFl) l 12 — g (BFZ) }L 22 = vz (16)
i=21n=x Y= A=y
Where v1, v2 represent a suitable feedback controller defined as follows:
U = Zxd - sz(/hz - /ixd) — 0xy1(A411 — Axa) (17)
vy = Aya = 0y2(A22 = Aya) = 0y1(Aa1 — Aya) (18)

Where 4,4 and 4,4 denote the desired trajectories for the flat output 1 ,; and 4,4, respectively. Meanwhile, the
controller gains are represented by oy, 0y, 0,1, and o,,,. The polynomial of the Burnovsky system (16) can be
defined as follows:

S2 4 0438 + Oy = 52+ 2my€p + €2, (19)
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s? +0yys + 0y = 5%+ 2my€ey. + €5 (20)

Where the parameters m,and m,, are the damping coefficients, and €, and ¢,,. are the frequencies in equations (19)
and (20). We can calculate the controller gain as follows:

— 2 — — 2 —
Ox1 = €xcrOx2 = meexcvo-yl - 6-yc'o-yz - 27'r131'5yc (21)

By integrating the feedback law, as described in equations (17- 18), into the system (15), we can express the Flatness-
Based Tracking Control (FBTC) utilized for the mobile robot in the following manner:

UFBTCx 1 | Axg — 04261 — 0y

uFBTCy] — m1b [,‘{xd } x2 '1 - x1€1 22)
yd 0y2€; Oy16€3

where e; = 11 ~Ayq and e; = 431 ~4,4.

In ideal conditions where uncertainties such as wind and wheel slip are negligible in the kinematic model of the WMR,

the control input defined by equation (22) can achieve satisfactory tracking performance for the desired trajectory.

However, it is practically impossible to have a model that accurately represents the real-world movement of the robot

in all environmental conditions. As a result, the following section will focus on developing a robust tracking control for

a WMR kinematic model that is subject to uncertainties.

I11. FLATNESS BASED SLIDING TRACKING CONTROL

In order to account for real-world conditions, we consider uncertainties such as slippage and external environmental
disturbances when describing the kinematic model of WMR. As a result, the model is defined differently, as shown
below:
X = cos(0)v + v, cos(0) + vg sin(0) + p,
y =sin(0) v+ v, sin(0) — v cos(6) +p, (23)
0= w+ Wg

The variables p, and p,, represent the external environmental disturbances, indicating the potential influences from the
surrounding conditions. On the other hand, v, and v, represent the slip velocities, where v, denotes the slip velocity
along the forward direction, and v; represents the slip velocity normal to it. Additionally, wg denotes the angular slip

velocity.

According to [15], it is assumed that the slippage phenomenon can be defined and bounded as follows:
V() = vs(8) = ws(t) = kqv(t) (24)
lvell < ellvll, vl < ellvll, ws < €3 (25)

where k;, &, & and &5 are a positive constants.

Assuming that A, and A,, are the reference trajectories for 4 ,; and 1,4, respectively, we can define the error
dynamics as e; = A;; — A4;4 for i =1, 2. To achieve convergence of the tracking error e; to zero in the presence of
uncertainties, we employ a sliding mode control approach that relies on the principles of the flatness law. By
incorporating this control strategy, we aim to ensure robust and accurate tracking performance even in the face of
system uncertainties. The design of the SMC involves two essential stages: the choice of the sliding surface and the
development of the control law.

These steps play a crucial role in establishing an effective and stable sliding mode control strategy. The selection of the
sliding surface determines the desired system behavior and convergence properties, while the design of the control law
focuses on generating control signals that guide the system towards the desired sliding surface and ensure its
maintenance on that surface. In the context of the tracking example for the Wheeled Mobile Robot (WMR), we make

use of the sliding variable o, = [sx, Sy ]T to represent the tracking error. To define the sliding surface, we consider the
desired tracking behavior and express it as follows, taking into account the specific requirements of the system:

Sx = €1+ Pieg (26)
Sy = é;+ Bae; (27)
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Where the gains 8, and S,can be selected using poleplacement techniques to ensure the asymptotic convergence of the
tracking errors e; = A1; —Axq and e; = A;; — 4,4 to zero. In this tracking example, the sliding variable o, =

[sx, Sy ]T is chosen as the tracking error. Therefore, the sliding surface for the WMR can be defined as follows:
é1+ pre1 =0 (28)
é2+ Paes =0 (29)

As suggested by mauledoux [16], to guarantee that the sliding surface o, = 0 is attractive, we can enforce the
dynamics of g, as follows:

o, = k; sgn(oy) (30)

Where the standard signum function is denoted by sgn ,and k; (i = 1, 2) is a constant. One approach to proving the
error dynamics stability is to analyze the following Lyapunov function:
1.
Vs = 2 0y Oy (31)

The derivative of V; is defined as follows:
V, = oo, (32)

We can conclude that V; is a positive function and its derivative 'V is negative or zero. Hence, the system exhibits
asymptotic Lyapunov stability. Using equations (26), (27) and (30) we obtain:

—Kk1Sgn(sy) = é + Bié; (33)
—Kysgn(sy) = €, + fé; (34)
As a result, by using equations (33) and (34), we can obtain:
A1 = /:ixd — 161 — K1Sgn(sy) (35)
121 = /:iyd — Baéy — Kzsgn(sy) (36)

Substituting (X 1,) and (1 ,;) with their new expressions defined by equations (33) and (34) in the control defined by
15, the flatness sliding tracking controller (FSTC) applied to WMR is defined as follows:

UFsMCx _1 |Axa — B1é1 — Kisgn(sy)

u ] = DBrop [ _ s (37)
FSMCy Aya — B26; — Kasgn(sy)

The FSTC defined by equations (37) contains a discontinuous control term due to the function sgn (g). Although

selecting sufficiently large values for k; and k,can achieve convergence to sliding variable in limited time and provide

robustness against perturbations, it also causes the phenomenon of chattering. Thus, to avoid this problem, the function

sgn (o) can be replaced by the function Sat defined as follows:

Oy ]
- lf |Gr| < Qs

Sat(oy) { as (38)
sgn(oy) if lop| > as
With as being the width of the threshold of the saturation function.

IVV. SIMULATION RESULTS

This section conducts simulation tests to verify the effectiveness and superiority of the proposed controller, Flatness
Sliding Mode Control (FSMC), denoted by Equation (37-38), over Flatness-Based Tracking Control (FBTC) outlined
in Equation (22). The parameters of the WMR are r = 0.1m, b = 0.15m. The controller design parameters of FBTC
and FSMC are chosen as my, = my, = 1, €xc = €, =2, 1 = f, = 5 and k; = k, = 10, a; = 0.2. In this
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simulation, we consider that slip velocities v, and v, can be up to 30% of the forward speed. So x; = 0.3. Moreover,
the WMR is subjected to sinusoidal wind perturbation, defined as follows:

Px = Py = 3cos(2t) m/sec,ws = 2rad/sec (39)
The reference trajectory considered is a circle, which is defined by the following equation:
x, = cos(t), y, = sin(t) (40)

Fig 2 illustrates the comparative performance of uncertain WMR systems employing different control strategies,
namely FBTC and FSMC. Upon analyzing the simulation data presented in this figure, it is evident that when affected
by slippage and external disturbances, the WMR system deviates significantly from its intended trajectory, making
FBTC ineffective as a controller. In contrast, the incorporation of the FSMC controller, utilizing the discontinuous term
of the sliding mode, effectively mitigates the effects of uncertainty, ensuring stability in the closed-loop control system.
As depicted in Fig 3, the occurrence of chattering in the FSMC control signals notably diminishes, suggesting that the
proposed control method achieves superior trajectory tracking while avoiding chattering. This enhancement in tracking
performance is especially remarkable when confronted with aggressive disturbances.

For a quantitative assessment of the tracking capabilities of the Wheeled Mobile Robot (WMR), we have utilized two
metrics: the Integral Absolute Error (IAE) and a control effort performance index, as suggested in existing literature, to
facilitate comparison. Additionally, we introduce another nonlinear control method, namely Backstepping Sliding
Mode Control (BSMC), alongside FBTC, to provide a comprehensive comparison with the proposed control strategy.
The Integral Absolute Error (IAE) is computed for each control strategy according to the following procedure:

t
IAE; = ff|€i(t)|dt- ei(t) = A;(t) — Aiq(t) (42)
0

where ¢ is the total simulation duration and i = 1, 2 represents the position in the x and y direction, respectively. The
control effort is given as follows:

N
1
Pavg = ;uz ) (42)

where N indicates the total count of samples. The associated key performance indicators IAE and P,,, for both
strategies are provided in Table I. After examining the data depicted in the table, it becomes evident that the FSMC
controller exhibits superior tracking performance when contrasted with the FBTC and BSMC approaches. Although its
tracking capability is nearly equivalent to that of the BSMC, the FSMC demands minimal effort to attain its objectives
in comparison. The enhanced efficiency of the FSMC over the BSMC can be attributed to the advantages of flatness
control, which streamline controller design by transforming the nonlinear system into a linear one.

TABLE I IAE and F,,4 performance indexes

Index | FBTC | BSMC | FSMC
IAE | 3.2127 | 0.08 | 0.0427
Pag | 0.75 | 1.1266 | 0.035

V. CONCLUSION

This paper tackles the challenge of robust trajectory tracking for the Wheeled Mobile Robot (WMR). Utilizing the
flatness-based control method, the nonlinear kinematic model of the WMR is transformed into a canonical form,
simplifying the implementation of a feedback controller. This controller leverages sliding mode techniques to enhance
system performance and robustness. Simulation results demonstrate the efficacy of the FSMC control approach in
improving trajectory tracking performance, even in scenarios with variations in wheel slip and external wind
disturbances. Future research will explore disturbances with unknown bounds impacting the WMR.
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