
10th International Conference on Control Engineering &Information Technology (CEIT-2025) 

Proceedings Book Series –PBS- Vol 23, pp.314-321 

Copyright © 2025 
ISSN: 2961-6611 

 

 

Design of a TinyML embedded system for vehicle recognition 

Zakaria MOUTAKKI
1
*, Ali HADDI

1
, Mohamed BOUSLA

1
 

1
 Innovating Technologies Team, National School of Applied Sciences, Abdelmalek Essaadi 

University, Tetouan 93000, Morocco 

 

 

Abstract 

In this work, we present the design of an embedded system for vehicle recognition, comprising 

two parts: software and hardware. The software part is based on a TinyML algorithm for vehicle 

recognition. The hardware part is based on the ESP32 CAM card. Data collection, a critical 

stage in any artificial intelligence system, was carried out using the ImageNet database and 

other customized images. These images underwent a set of pre-processing techniques such as 

dimension reduction, before starting training with Tensorflow Lite. The resulting model will 

be implemented in the ESP32 CAM board to build the embedded system. 

 

 

1. Introduction 

Vehicle recognition via TinyML [1] represents a major breakthrough for various intelligent 

applications, such as: automated surveillance (real-time traffic analysis), optimized traffic 

management, automotive in-vehicle systems. This technology also opens up prospects in key 

areas such as: autonomous vehicles (environmental perception), road safety (violation 

detection), intelligent parking (identification of available spaces). 

Tiny Machine Learning (TinyML) is a sub-discipline of Machine Learning dedicated to the 

deployment of AI models on energy-efficient embedded devices (microcontrollers, IoT 

sensors). Its key features include extreme optimization with lightweight models (a few KB) 

running on MCUs (e.g. Arduino, ESP32), low power consumption: runs on long-term batteries 

(milliwatts), local processing: No dependence on the cloud, ideal for real-time and secure 

applications [2]. This approach makes it possible to integrate AI into constrained environments, 

while maintaining high operational performance. 

Implementing an artificial intelligence algorithm on a microcontroller-based board presents 

hardware constraints in terms of available memory and required computing power [3][4]. As a 

result, data size has to be minimized in order to have an adequate learning model. At the same 

time, recognition accuracy must be optimized, as this is a critical system whose failures can 

pose a threat to human life. 



10th International Conference on Control Engineering &Information Technology (CEIT-2025) 

Proceedings Book Series –PBS- Vol 23, pp.314-321 

Copyright © 2025 
ISSN: 2961-6611 

 

 

Researchers have opted to deploy AI models on embedded systems, an approach that offers 

major advantages but faces challenges that the scientific community is striving to overcome. 

Dziri et al [5] have developed an embedded system for tracking multiple objects in real time, 

incorporating an innovative occlusion management method. Their architecture is based on a 

Raspberry Pi equipped with a RaspiCam, combining: A detection module based on background 

subtraction, A tracking module using an enhanced GMPHD tracker. To resolve occlusions, their 

solution relies on the implementation of a distance threshold between bounding boxes to 

identify overlaps, and a comparison of object characteristics before/after occlusion to re- 

identify targets. Results were: 30 FPS at QVGA resolution and 15 FPS at VGA, demonstrating 

effectiveness for real-time applications. Srijongkon et al [6] designed a vehicle counting system 

on a Soc Xilinx FPGA, optimizing detection via adaptive background subtraction, adjusting 

parameters such as lighting to limit the impact of shadows and improve accuracy. This work 

illustrates how embedded AI can meet critical needs (tracking, counting) while overcoming the 

challenges of hardware constraints. 

Our vehicle recognition system identifies different types of vehicles (cars, trucks, bicycles) 

from images or camera data. This is based on the Tensorflow Lite (TFLite) trained model [7]. 

TFLite is an open-source framework from Google designed to deploy Machine Learning 

models on embedded, mobile or IoT devices, with compute, memory and energy constraints. 

It is particularly well suited to TinyML projects, thanks to its light weight and optimization for 

real-time inference. In our vehicle recognition system, TFlite presents a suitable method 

because it offers certain advantages, namely: Lightweight models, low latency, compatibility 

and energy savings. 

2. Presentation of the designed system 

 

2.1. Hardware selection 

There are a number of boards suitable for TinyML image processing applications, such as 

Arduino Nano 33 BLE Sense, ESP32 and Raspberry Pi Pico, because they have sufficient 

processing power and perhaps even link a camera module. In our case, we opted to use ESP32- 

CAM. 

The ESP32-CAM is a popular, low-cost module combining an ESP32 microcontroller with an 

OV2640 (2 MP) camera, ideal for TinyML projects including image, face or vehicle 

recognition. Features include: 



10th International Conference on Control Engineering &Information Technology (CEIT-2025) 

Proceedings Book Series –PBS- Vol 23, pp.314-321 

Copyright © 2025 
ISSN: 2961-6611 

 

 

- Microcontroller: ESP32 (dual-core, 240 MHz, Wi-Fi/BLE). 

 

- Camera: OV2640 (resolutions up to 1600x1200, compressed JPEG). 

 

- Memory: 

 

 Internal RAM: 520 KB (shared with Wi-Fi). 

 External PSRAM: 4 MB (required for image processing). 

 

- Connectivity: Wi-Fi 802.11 b/g/n, Bluetooth 4.2. 

 

- I/O: GPIO, UART, I2C, SPI. 

 

Figure 1. ESP32-CAM module. Figure 2. Ov2640 camera. 

 

 

 

The ESP32-CAM is a great choice for a TinyML vehicle recognition system because it has a 

built-in camera module (OV2640), Wi-Fi connectivity, and a powerful dual-core processor, all 

in a small, low-power package. 

2.2. Artificial intelligence method selection 

A vehicle recognition system can be developed using a number of different approaches. For 

example, we can use an object detection module after pre-processing, based on motion. Another 

solution may be based on approaches using sliding windows for feature computation [9]. But 

this kind of approach could be computationally expensive, and much larger. 

The choice of TinyML (Machine Learning on embedded devices) is motivated by unique 

advantages tailored to the constraints of IoT systems, edge devices and applications requiring 

local intelligence. Here are the key reasons: 

a. Energy savings 

 Low power consumption: TinyML models are optimized to run on microcontrollers 

(e.g. ESP32) consuming a few milliwatts. 



10th International Conference on Control Engineering &Information Technology (CEIT-2025) 

Proceedings Book Series –PBS- Vol 23, pp.314-321 

Copyright © 2025 
ISSN: 2961-6611 

 

 

 Long battery life: Ideal for stand-alone devices (e.g. traffic sensors, surveillance 

cameras) running for months without recharging. 

b. Low cost 

 Affordable hardware: Microcontrollers costing just a few dollars (ESP32-CAM) vs. 

expensive servers or GPU cards. 

 No cloud dependency: Avoid cloud subscriptions (AWS, Azure) and data transfer costs. 

c. Real Time 

 Minimal latency: Local inference without depending on an Internet connection (e.g. 

collision detection in < 50 ms). 

 Autonomous decision: immediate response (e.g. alert when a vehicle in danger is 

detected). 

 

2.3. Database preparation 

 

a. Data collection 

 

A specialized database of vehicle categories will be the starting point for training the model. 

Images will be collected from the web and from images taken in real life. The collected dataset 

must be labeled (cars, trucks, bikes, motorcycles) before training. 

A database such as ImageNet, featuring vehicle categories, can be adopted as an alternative in 

case the specialized dataset is not sufficient. This is because, to build a robust module, we need 

a set of vehicle images taken under different conditions, namely: vehicle angle, lighting 

conditions, presence of occlusion. In this case, data augmentation can help solve the problem. 

And let's not forget that the limited memory in ESP32-CAM can restrict the size of the model. 

A balance has to be struck between model complexity and resource constraints. 

 

 
Figure 3. Images of the database used in training. 



10th International Conference on Control Engineering &Information Technology (CEIT-2025) 

Proceedings Book Series –PBS- Vol 23, pp.314-321 

Copyright © 2025 
ISSN: 2961-6611 

 

 

b. Image pre-processing 

 

Data pre-processing is important. Images need to be resized to a smaller resolution (96x96 

pixels) to suit the microcontroller. Then a grayscale conversion is applied to reduce the size. 

Finally, pixel normalization can be considered for the same purpose of reducing the memory 

footprint. 

Thus, the pre-processing module will contain the following steps: 

 

- Resize images to 96x96 pixels. 

 

- Convert to grayscale to reduce data size. 

 

- Normalize pixel values (e.g. [0, 1]). 

 

c. Model design and optimization 

 

Simple and customized convolutional neural networks (CNNs) are well suited to image 

recognition [10]. This is also true for TinyML, as the model contains only a few layers. 

Techniques such as quantization have been adopted to reduce model size. Quantization 

converts 32-bit floating-point weights into 8-bit integers, making the model smaller and faster. 

TensorFlow supports the training operation. This is done by transfer to generate a pre-trained 

model. This saves training time and improves accuracy. Conversion to TFLite format is then 

performed. 

2.4. Testing and optimization 

Prior to hardware implementation, a series of tests were carried out to determine certain 

coefficients related to accuracy and performance. 

a. Basic metrics 

 

- Accuracy: Percentage of correct predictions. 

 

- Recall: Ability to detect all instances (e.g. not missing vehicles). 

 

- Latency: Inference time (e.g. < 100 ms for real time). 

 

- Memory consumption: RAM/ROM used (e.g. < 80% of capacity). 

 

b. Real-life testing 

 

- Various scenarios: Low light, rain, odd viewing angles. 



10th International Conference on Control Engineering &Information Technology (CEIT-2025) 

Proceedings Book Series –PBS- Vol 23, pp.314-321 

Copyright © 2025 
ISSN: 2961-6611 

 

 

- Noise robustness: Add blur or artifacts to images. 

 

- Hardware benchmark: Measure latency on ESP32-CAM vs Raspberry Pi. 

 

2.5. Implementation using TensorFlow Lite Micro 

Once the model has been trained and converted to TF Lite, it needs to be implemented in the 

ESP32 CAM board. Tools like TensorFlow Lite Micro can help. The inference code will 

capture the camera images, pre-process them (resizing, grayscale conversion, normalization) 

and feed them into the model. The output will be the predicted vehicle class. 

2.6. Reducing energy consumption 

Energy consumption is a problem. TinyML is supposed to be energy-efficient. The model must 

therefore be optimized for efficient operation. For this reason, the ESP32-CAM will be in deep 

sleep mode until motion is detected. 

3. Conclusion 

In this work, we presented the design of an embedded system for vehicle recognition. The 

system is based on TFLite as the core software module. This choice is proven by the quality 

of this approach with regard to constraints that can hinder the implementation of such a system, 

such as memory constraints and computing power. The system will be implemented on an 

ESP32 CAM board, which is ideally suited to combining an ESP32 microcontroller with an 

OV2640 (2 MP) camera. Looking ahead, we plan to complete the system and implement an 

IoT platform for sending vehicle data via the Internet, based on the MQTT protocol. 

References 

[1] Ray, P. P. (2022). A review on TinyML: State-of-the-art and prospects. Journal of King Saud 

University-Computer and Information Sciences, 34(4), 1595-1623. 

[2] Warden, P., & Situnayake, D. (2019). Tinyml: Machine learning with tensorflow lite on 

arduino and ultra-low-power microcontrollers. O'Reilly Media. 

[3] Sanchez-Iborra, R., & Skarmeta, A. F. (2020). Tinyml-enabled frugal smart objects: 

Challenges and opportunities. IEEE Circuits and Systems Magazine, 20(3), 4-18. 

[4] Immonen, R., & Hämäläinen, T. (2022). Tiny Machine Learning for Resource‐Constrained 

Microcontrollers. Journal of Sensors, 2022(1), 7437023. 

[5] Dziri, A., Duranton, M., & Chapuis, R. (2016). Real-time multiple objects tracking on 

Raspberry-Pi-based smart embedded camera. Journal of Electronic Imaging, 25(4), 041005. 

[6] K. Srijongkon, R. Duangsoithong, N. Jindapetch, M. Ikura and S. Chumpol, "SDSoC based 

development of vehicle counting system using adaptive background method," 2017 IEEE 



10th International Conference on Control Engineering &Information Technology (CEIT-2025) 

Proceedings Book Series –PBS- Vol 23, pp.314-321 

Copyright © 2025 
ISSN: 2961-6611 

 

 

Regional Symposium on Micro and Nanoelectronics (RSM), 2017, pp. 235-238, doi: 

10.1109/RSM.2017.8069172 

[7] David, R., Duke, J., Jain, A., Janapa Reddi, V., Jeffries, N., Li, J., ... & Rhodes, R. (2021). 

Tensorflow lite micro: Embedded machine learning for tinyml systems. Proceedings of 

Machine Learning and Systems, 3, 800-811. 

[8] Moutakki, Z., Ouloul, I. M., Afdel, K., & Amghar, A. (2018). Real-time system based on 

feature extraction for vehicle detection and classification. Transport and 

Telecommunication, 19(2), 93. 

[9] Lee, J., Bang, J., & Yang, S. I. (2017, October). Object detection with sliding window in 

images including multiple similar objects. In 2017 international conference on information and 

communication technology convergence (ICTC) (pp. 803-806). IEEE. 

[10] Dutta, L., & Bharali, S. (2021). Tinyml meets iot: A comprehensive survey. Internet of 

Things, 16, 100461. 


