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Abstract— This study addresses the critical challenge of optimizing wind farm layouts, where the performance is 
highly sensitive to the configuration of evolutionary algorithm parameters. Specifically, the research investigates 
how varying crossover and mutation rates in Genetic Algorithms (GAs) influences the efficiency of wind farms 
under two wind speed conditions: 10 m/s and 12 m/s. The aim is to identify parameter settings that maximize 
energy output. A parametric study is conducted with crossover rates ranging from 0.01 to 0.9 and mutation 
rates from 0.01 to 0.1. The analysis reveals that at 12 m/s, a crossover rate of 0.9 and a mutation rate of 0.1 yield 
the best performance, while at 10 m/s, the optimal values are 0.75 and 0.1, respectively. These results underline 
the importance of adapting GA parameters to specific wind conditions. The study concludes that tailored 
parameter tuning significantly enhances wind farm efficiency, providing valuable insights for the design of 
robust and adaptable optimization strategies. 
Keywords— genetic algorithms, wind farm, optimization, tuning, GA parameters 

I. INTRODUCTION 

 
Wind energy is a key renewable resource, offering cost-effective electricity with minimal environmental 

impact. By 2050, it may surpass biomass and photovoltaics in affordability [1] [2]. Its rapid growth is driven 
by climate change, energy security, rising fossil fuel costs, and increasing investor interest [3] [4] [5]. 

 
Wind energy availability varies globally, with some regions more suitable due to optimal wind conditions 

[6] [7]. Proper turbine placement is crucial to maximizing energy output and minimizing costs by reducing 
wake effects. This phenomenon occurs when a turbine extracts energy from the wind, creating a low-speed 
zone behind it, which reduces the efficiency of downstream turbines [8] [9]. The wake effect depends on 
wind speed, direction, and turbine design [10]. 

 
Mosetti et al. (1994) first optimized turbine placement using GA [11]. later improved by Grady et al. 

(2005) with a refined objective function [12]. Marmidis et al. (2008) applied the Monte Carlo method [13]. 
By 2021, optimization advanced with Wu and Wang’s improved ant colony optimization (ACO) [14]. 
Ogunjuyigbe’s GA adaptation for multidirectional winds [15]. and Asfour et al.'s (2022) GA-Jensen model 
integration to enhance energy output and reduce costs [16]. 

 
Genetic algorithms, based on Darwin’s evolution theory, generate and evolve solution populations to find 

optimal ones [17]. Widely used in problem-solving, they are especially effective in wind farm planning 
[18]. 
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Starting with a random population, 
search space, iterating until a satisfactory solution is found [19].

 
This study optimizes a wind farm using GAs a

convergence and identify optimal parameters through trial and error. Results are compared on technical 
(energy output) and economic (cost) levels to better understand wind speed’s impact on GA optimi

 
The paper is structured as follows: Section 2 describes the study context. Section 3 outlines the wind farm 

characteristics and adopted methodology. Section 4 presents and discusses the results, comparing optimal 
configurations and analyzing wind 
research directions. 

 
II. PROBLEM

In order to estimate the power output, drop that wind turbine wakes cause, several models to describe
impacts have been established since 1980
single wake model made by Jensen “Fig. 1”, with a linearly expanding diameter [22] [23].

 

 

 

The radius  is proportional to the

 
The wake's rate of expansion with 

 is the height of the turbine generating the wake and 
characteristics of the terrain. 

 
The velocity in the wake at a distance

 
This equation defines wake speed based on incoming wind speed. Wind farm costs depend on 

equipment, and wind conditions, but
[24]. Thus, annual farm costs are expressed as follows:

Our main objective is to minimize 
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 the algorithm applies selection, crossover, and 
search space, iterating until a satisfactory solution is found [19]. 

This study optimizes a wind farm using GAs at 12 m/s and 10 m/s to assess speed variation effects on 
convergence and identify optimal parameters through trial and error. Results are compared on technical 
(energy output) and economic (cost) levels to better understand wind speed’s impact on GA optimi

The paper is structured as follows: Section 2 describes the study context. Section 3 outlines the wind farm 
characteristics and adopted methodology. Section 4 presents and discusses the results, comparing optimal 
configurations and analyzing wind speed effects. Finally, Section 5 summarizes key findings and future 

PROBLEM FORMULATION AND MODELLING APPROACH

power output, drop that wind turbine wakes cause, several models to describe
been established since 1980 [20] [21]. In this paper, we have chosen to work with a simple 

single wake model made by Jensen “Fig. 1”, with a linearly expanding diameter [22] [23].

the downwind distance,  and is calculated by the following

  
 distance is determined by  , which is defined as: 

is the height of the turbine generating the wake and  is the surface roughness, depending on the 

distance  from the wind turbine can be obtained by solving

This equation defines wake speed based on incoming wind speed. Wind farm costs depend on 
conditions, but the economic model considers only turbine count in

[24]. Thus, annual farm costs are expressed as follows: 

 the cost per unit of energy, namely: 

 

Figure I The Jensen Wake Effect Model 

(CEIT-2025) 

 mutation to explore the 

t 12 m/s and 10 m/s to assess speed variation effects on 
convergence and identify optimal parameters through trial and error. Results are compared on technical 
(energy output) and economic (cost) levels to better understand wind speed’s impact on GA optimization. 

The paper is structured as follows: Section 2 describes the study context. Section 3 outlines the wind farm 
characteristics and adopted methodology. Section 4 presents and discusses the results, comparing optimal 

speed effects. Finally, Section 5 summarizes key findings and future 

MODELLING APPROACH 

power output, drop that wind turbine wakes cause, several models to describe their 
[20] [21]. In this paper, we have chosen to work with a simple 

single wake model made by Jensen “Fig. 1”, with a linearly expanding diameter [22] [23]. 

following expression: 

 

surface roughness, depending on the 

solving (3): 

This equation defines wake speed based on incoming wind speed. Wind farm costs depend on location, 
count in total cost calculation 
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In general, the power calculation in a wind farm is based on the starting and stopping wind speed of the 
wind turbine. Wind power is directly proportional to the cube of wind speed and is generally represented by 
the following equation: 

In this mathematical statement: 
Wind power  in watts (W) depends on the swept area

m/s, and the efficiency coefficient , which accounts for energy conversion losses.
 
Having established the modeling 

the optimization process using Genetic Algorithms
 

III. G
O

The wind farm consists of 100 cells over a 2 km × 2 km area, each 200 m 
soil roughness of 0.3. GA-based optimization begins with 300 individuals, where grid cells act as 
chromosomes (1 for a turbine, 0 for absence). The fitness function is the cost/power ratio, and selection
assigns reproduction probabilities, maintaining an elitism rate of 0.2.

Crossover and mutation coefficients, set at 0.15 and 0.045, were based on literature values (0.01
crossover, 0.01–0.1 for mutation). The method was tested at 12 m/s and 10 m/s to compare performa
variations, as shown in Fig. II. 
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In general, the power calculation in a wind farm is based on the starting and stopping wind speed of the 
wind turbine. Wind power is directly proportional to the cube of wind speed and is generally represented by 

in watts (W) depends on the swept area  in m², air density  in kg/m³, wind speed
, which accounts for energy conversion losses. 

Having established the modeling approach and objective function, we now describe the implementation of 
the optimization process using Genetic Algorithms. 

GENETIC ALGORITHM IMPLEMENTATION FOR
OPTIMIZATION 

The wind farm consists of 100 cells over a 2 km × 2 km area, each 200 m wide (5 rotor diameters), with a 
based optimization begins with 300 individuals, where grid cells act as 

chromosomes (1 for a turbine, 0 for absence). The fitness function is the cost/power ratio, and selection
n probabilities, maintaining an elitism rate of 0.2. 

Crossover and mutation coefficients, set at 0.15 and 0.045, were based on literature values (0.01
0.1 for mutation). The method was tested at 12 m/s and 10 m/s to compare performa

Figure II flowchart of GA method 

(CEIT-2025) 

In general, the power calculation in a wind farm is based on the starting and stopping wind speed of the 
wind turbine. Wind power is directly proportional to the cube of wind speed and is generally represented by 

in kg/m³, wind speed  in 

approach and objective function, we now describe the implementation of 

FOR WIND FARM 

wide (5 rotor diameters), with a 
based optimization begins with 300 individuals, where grid cells act as 

chromosomes (1 for a turbine, 0 for absence). The fitness function is the cost/power ratio, and selection 

Crossover and mutation coefficients, set at 0.15 and 0.045, were based on literature values (0.01–0.9 for 
0.1 for mutation). The method was tested at 12 m/s and 10 m/s to compare performance 
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With the optimization framework in place, the next section presents and analyzes the results obtained under 
different crossover and mutation rates at two 

 

This section presents the impact of varying crossover (
at two wind speeds: 12 m/s and 10 m/s. The Genetic Algorithm was executed under multiple parameter settings, 
and the total annual power output and the corresponding fitness values were recorded. The detailed results are 
summarized in Table 1. 

 

 
Table 1

 

Pc Pm Total Power (kW/yr) (12 m/s) Fitness
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With the optimization framework in place, the next section presents and analyzes the results obtained under 
different crossover and mutation rates at two wind speeds. 

 

IV. RESULTS AND DISCUSSIONS 
This section presents the impact of varying crossover ( ) and mutation ( ) rates on wind farm performance 

at two wind speeds: 12 m/s and 10 m/s. The Genetic Algorithm was executed under multiple parameter settings, 
and the total annual power output and the corresponding fitness values were recorded. The detailed results are 

1 Total power and fitness value results for 12m/s and 10m/s 

Fitness Value (12 m/s) Total Power (kW/yr) (10 m/s) Fitness

(CEIT-2025) 

With the optimization framework in place, the next section presents and analyzes the results obtained under 

) rates on wind farm performance 
at two wind speeds: 12 m/s and 10 m/s. The Genetic Algorithm was executed under multiple parameter settings, 
and the total annual power output and the corresponding fitness values were recorded. The detailed results are 

Fitness Value (10 m/s) 
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Pc Pm Total Power (kW/yr) (12 m/s) Fitness Value (12 m/s) Total Power (kW/yr) (10 m/s) Fitness Value (10 m/s) 

0.01 0.01 14451 0.00156444 8115 0,00278591 

0.01 0.055 14530 0.00155593 8195 0.00275872 

0.01 0.1 14621 0.00154625 8278 0.00273106 

0.15 0.01 14658 0.00154234 8300 0.00277382 

0.15 0.055 14651 0.00154308 8362 0.00270338 

0.15 0.1 14628 0.00154551 8260 0.00273696 

0.3 0.01 14642 0.00154403 8597 0,00262972 

0.3 0.055 14637 0.00154456 8595 0.00262970 

0.3 0.1 14613 0.00154709 8778 0.00257489 

0.45 0.01 14662 0.00154192 8830 0.00255993 

0.45 0.055 14620 0.00154635 8025 0.00281686 

0.45 0.1 14597 0.00154879 8128 0.00278130 

0.6 0.01 14557 0.00155304 8483 0.00266499 

0.6 0.055 14663 0.00154182 8077 0.00279897 

0.6 0.1 14460 0.00156346 8362 0.00270338 

0.75 0.01 14602 0.00154826 8780 0.00257489 

0.75 0.055 14641 0.00154413 8545 0.00264548 

0.75 0.1 14615 0.00154688 9065 0.00249376 

0.9 0.01 14514 0.00155764 8831 0.00255993 

0.9 0.055 14465 0.00156292 8597 0.00262970 

0.9 0.1 14672 0.00154087 8311 0.00277006 
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The Figure III presents the variation of total power output as a function of (
 

 

Figure 

 
 
 
 
 
A. Analysis of Crossover Rate Impact (
To isolate the effect of crossover rate, we analyzed results with a fixed mutation rate of 

the power output exhibits an overall increasing trend with 
indicates that higher crossover rates effectively promote exploration and diversity within the population, 
facilitating the discovery of high-quality solutions. Howev
frequent recombination may disrupt building blocks in some cases.

Conversely, at 10 m/s, the power output reaches a maximum of 9,065 kW/year at 
 increases to 0.9. This decline suggests that under lower wind energy availability, excessive crossover may 

lead to premature convergence or destruction of promising individuals before they can fully evolve.
B. Analysis of Mutation Rate Impact 
By fixing = 0.01, we examined 

show that increasing  from 0.01 to 0.1 enhances performance at both wind speeds. At 12 m/s, power rises 
from 14,451 kW/year to 14,621 kW/year, and at 10 m/s from 8,115 kW/year to 8,2

This trend can be attributed to the fact that mutation helps maintain genetic diversity and avoids local optima. 
However, additional tests with higher
when = 0.1 leads to lower power than 
beyond which disruptive mutations outweigh their benefits.

 
Both parameters ( , ) show strong interaction effects and should not be optimized 

results underscore the non-universality of optimal parameters and reinforce the idea that algorithm tuning should 
consider environmental conditions—in this case, wind speed.
are summarized in the next section. 
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presents the variation of total power output as a function of ( , ) at both wind speeds.

Figure IV  Annual power according to the (Pc,Pm) combination 

A. Analysis of Crossover Rate Impact ( =0.1) 
To isolate the effect of crossover rate, we analyzed results with a fixed mutation rate of 

exhibits an overall increasing trend with , peaking at 14,672 kW/year when 
indicates that higher crossover rates effectively promote exploration and diversity within the population, 

quality solutions. However, the gain is not strictly linear, suggesting that too 
frequent recombination may disrupt building blocks in some cases. 

Conversely, at 10 m/s, the power output reaches a maximum of 9,065 kW/year at 
ne suggests that under lower wind energy availability, excessive crossover may 

lead to premature convergence or destruction of promising individuals before they can fully evolve.
B. Analysis of Mutation Rate Impact ( = 0.01) 

= 0.01, we examined the sensitivity of power output to changes in the mutation rate. Results 
from 0.01 to 0.1 enhances performance at both wind speeds. At 12 m/s, power rises 

from 14,451 kW/year to 14,621 kW/year, and at 10 m/s from 8,115 kW/year to 8,278 kW/year.
This trend can be attributed to the fact that mutation helps maintain genetic diversity and avoids local optima. 

However, additional tests with higher  values reveal that excessive mutation may reduce performance, as seen 
= 0.1 leads to lower power than = 0.055 in some cases. Thus, there is an optimal mutation threshold 

beyond which disruptive mutations outweigh their benefits. 

) show strong interaction effects and should not be optimized 
universality of optimal parameters and reinforce the idea that algorithm tuning should 

in this case, wind speed. The key conclusions and implications of this study 

(CEIT-2025) 

) at both wind speeds. 

 

To isolate the effect of crossover rate, we analyzed results with a fixed mutation rate of  = 0.1. At 12 m/s, 
, peaking at 14,672 kW/year when = 0.9. This 

indicates that higher crossover rates effectively promote exploration and diversity within the population, 
er, the gain is not strictly linear, suggesting that too 

= 0.75, then drops when 
ne suggests that under lower wind energy availability, excessive crossover may 

lead to premature convergence or destruction of promising individuals before they can fully evolve. 

the sensitivity of power output to changes in the mutation rate. Results 
from 0.01 to 0.1 enhances performance at both wind speeds. At 12 m/s, power rises 

78 kW/year. 
This trend can be attributed to the fact that mutation helps maintain genetic diversity and avoids local optima. 

values reveal that excessive mutation may reduce performance, as seen 
= 0.055 in some cases. Thus, there is an optimal mutation threshold 

) show strong interaction effects and should not be optimized independently. These 
universality of optimal parameters and reinforce the idea that algorithm tuning should 

The key conclusions and implications of this study 
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This study represents the important influence of wind speed and genetic algorithm (GA) parameters on 
optimization performance of a wind 
mutation ( ) rates is different for each case due to different characteristics of the wind farm. At a wind speed 
of 12 m/s, values of  = 0.9 and 
parameters for 10 m/s are  = 0.75 and
non-universality of optimal parameters and the necessity of a new approach to adapt the parameters in 
dependence on a wind farm's characteristics
efficiency without trial-and-error recalibration so that the robustness and efficiency of AGs in any context or 
particular condition of the wind farm are improved. Future studies could also explore advanced metaheuristic 
approaches such as the Grey Wolf Optimizer (GWO) and the African Vulture Optimization Algorithm 
(AVOA) to further enhance optimization performance.
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V. Conclusion 

This study represents the important influence of wind speed and genetic algorithm (GA) parameters on 
 farm. The results show that the optimal combination

each case due to different characteristics of the wind farm. At a wind speed 
 = 0.1 give the highest power of 14672 kW/yr, while the optimum 

and  = 0.1 with a power of 9065 kW/yr. These variations point out the 
universality of optimal parameters and the necessity of a new approach to adapt the parameters in 

farm's characteristics—most typically, wind speed—to better increase
error recalibration so that the robustness and efficiency of AGs in any context or 

particular condition of the wind farm are improved. Future studies could also explore advanced metaheuristic 
Wolf Optimizer (GWO) and the African Vulture Optimization Algorithm 

(AVOA) to further enhance optimization performance. 
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