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Abstract— Target tracking in multistatic radar systems is challenging due to the impact of waveform selection 

and the transformation of elliptic measurements into Cartesian estimates. This paper proposes a novel algorithm 
that jointly optimizes the transmitted waveform and Cartesian estimates to minimize tracking error. The 
algorithm utilizes the Cramer-Rao Lower Bound (CRLB) for Cartesian estimates derived from elliptic 
measurements (time delay, Doppler shift, and angle of arrival). A single transmitter and multiple receivers 
dynamically select the optimal waveform and estimate based on the target's predicted state. Simulations 
demonstrate that the proposed algorithm significantly outperforms fixed configurations, improving tracking 
accuracy while reducing power and bandwidth consumption.  
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I. Introduction 

Target tracking in multistatic radar systems has garnered significant attention in recent years due to 
its advantages over monostatic radar, such as increased coverage, immunity to jamming, and spatial 
diversity [1, 2]. In multistatic radar systems, transmitters and receivers are spatially separated, 
leading to improved target detection and tracking performance. However, the performance of these 
systems heavily depends on the transmitted waveform, radar geometry, and the accuracy of target 
state estimates [3, 4]. 

One of the main challenges in multistatic radar systems is the transformation of elliptic 
measurements—such as time delay, Doppler shift, and angle of arrival—into Cartesian estimates of 
the target’s position and velocity. These Cartesian estimates are essential for accurate target tracking 
using Linear Kalman Filters (LKF) [5]. However, their accuracy is significantly affected by both the 
transmitted waveform and the transformation method used. Traditional approaches often rely on 
fixed waveforms and fixed Cartesian estimates, which may not adapt well to dynamic tracking 
scenarios where the target's position and velocity evolve over time [6]. 

To address this challenge, this paper proposes a novel algorithm for the joint adaptive selection of 
the transmitted waveform and Cartesian estimate. The algorithm is designed to minimize the 
Mean Square Error (MSE) of the tracking process by leveraging the Cramer-Rao Lower Bound 
(CRLB) of Cartesian estimates. The CRLB provides a theoretical lower bound on the variance of any 
unbiased estimator and is used here to evaluate the performance of various waveform and estimate 
configurations [7]. By dynamically selecting the optimal waveform and Cartesian estimate based on 
the target’s predicted state, the algorithm improves tracking accuracy while reducing the 
communication bandwidth and power consumption between the transmitter and receivers. 

The main contributions of this paper are as follows: 
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 Derivation of the CRLB for Cartesian Estimates using a transformation method that 
incorporates waveform parameters, target motion, and radar geometry. 

 Proposal of a joint adaptive selection scheme that dynamically chooses both the waveform 
and Cartesian estimate to minimize the tracking MSE. 

 Performance evaluation through simulations, showing that the proposed algorithm 
outperforms traditional fixed-configuration methods in terms of accuracy, efficiency, and 
system stability. 

This study contributes to the ongoing development of intelligent, resource-efficient multistatic radar 
systems capable of adapting to dynamic environments. 

 
II. SYSTEM MODEL AND PROPOSED ALGORITHM 

1. Multistatic Radar System  :  

We consider a multistatic radar system consisting of a single transmitter (Tx) and N receivers (𝑅ଵ ,𝑅ଶ ..., 
𝑅ே) distributed at different locations. The system is designed to track a moving target in a two-dimensional 
space. Each receiver is capable of measuring: 
Time delay (τ). 
Doppler shift (v). 
Angle of arrival (θ). 
These measurements are referred to as elliptic measurements and are transformed into Cartesian estimates of 
the target's position (x, y) and velocity (x˙, y˙) using specific mathematical transformations. 
2. Elliptic Measurements: 
The elliptic measurements for each receiver i are defined as follows: 

τ =
ோି


 , 𝑣 =




𝑅 , 𝜃 = 𝑎𝑡𝑎𝑛2(𝑦 − 𝑦𝑅, 𝑥 − 𝑥𝑅)                                                           (1)     

Where: 
1. 𝑅 = 𝑅் +  𝑅ோ: The total distance from the transmitter to the target and then to receiver i, 

2. 𝑅் = ඥ𝑥ଶ + 𝑦ଶ: The distance from the transmitter to the target. 

3. 𝑅ோ = ඥ(𝑥 − 𝑥ோ)ଶ + (𝑦 − 𝑦ோ)ଶ: The distance from the target to receiver i, 

4. 𝐿 = ට(𝑥ோ
ଶ + 𝑦ோ

ଶ : The distance between the transmitter and receiver i , 

5. 𝑐 : The speed of light. 
6. 𝑓: The carrier frequency of the transmitted signal. 

3.  Cartesian Estimates: - 

To extract position and velocity from the elliptic measurements, we define three distinct transformation 
methods: 

 Transformation 1 (𝑦ଵ):Uses 𝜏ଵ, 𝜃ଵ, 𝑣ଵ, 𝑣ଶ. 
 Transformation 2 (𝑦ଶ):Uses 𝜏ଶ, 𝜃ଶ, 𝑣ଵ, 𝑣ଶ. 
 Transformation 3 (𝑦ଷ):Uses  𝜃ଵ 𝜃ଶ, 𝑣ଵ, 𝑣ଶ. 

That target position (x, y) is computed using the intersection of elliptic measurement, while the target velocity 
(x˙,  y˙) is computed using Doppler shift measurement. 
4. Cramer-Rao Lower Bound (CRLB): 
These measurements are referred to as elliptic measurements and are transformed into Cartesian estimates of 
the target's position (x, y) and velocity (x˙, y˙) using specific mathematical transformations. 

𝑪𝒚𝟏 =
ப𝐡(𝐳)

ப𝐳
 𝐂𝐳𝑙 

ப𝐡(𝐳)்

ப𝐳
                                                                                                        (2)    

where: 
 Cyl: The CRLB for the Cartesian estimates. 
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 𝐂𝐳𝑙: The CRLB for the elliptic measurements. 

 
ப𝐡(𝐳)்

ப𝐳
: The Jacobian matrix of the transformation h𝑙 . 

This relationship quantifies how transformation quality depends on measurement sensitivity and radar 
geometry. 

5. Proposed Algorithm: The proposed algorithm consists of two main phases: 
 Target Tracking: A linear Kalman filter (LKF) is used to track the target based on the Cartesian 

estimates. 
 Adaptive Selection: The optimal transmitted waveform and Cartesian estimate are selected to 

minimize the tracking mean-square error (MSE). This is achieved by minimizing the trace of the 
error covariance matrix of the target state estimate: 

{𝑚ାଵ
∗ , 𝝍ାଵ

∗ =  𝑎𝑟𝑔𝑚𝑖𝑛𝒎,𝝍 𝑇𝑟(𝑃ାଵ∣𝒌ା𝟏 ( 𝑚, 𝜓))                                (3)   
where: 

 𝑚ାଵ
∗ :The index of the optimal Cartesian estimate. 

 𝜓ାଵ
∗ : The parameters of the optimal waveform. 

 𝑃ାଵ∣𝒌ା𝟏 ( 𝑚, 𝜓): The error covariance matrix of the target state estimate. 
6. Advantages of the Proposed Algorithm: 

 Reduced Power and Bandwidth Consumption: Only one Cartesian estimate is used at each time step. 
 Improved Tracking Performance: The tracking performance is dynamically optimized based on the 

target's state. 
 Stability: The use of a linear Kalman filter (LKF) avoids the divergence issues associated with 

nonlinear filters. 

III.  SIMULATION SETUP  

To evaluate the performance of the proposed algorithm, a simulation was conducted in a multistatic radar 
environment. The configuration includes specific transmitter/receiver locations, target trajectory, waveform 
parameters, and noise models. 

 Transmitter and Receiver Locations: 

o Transmitter (Tx): Located at the origin [0,0] meters. 
o Receivers (Rx): Three receivers located at the following positions: 

 Rx1: [20000,0] meters. 
 Rx2: [10000,20000] meters. 
 Rx3: [0,15000] meters. 

This setup provides spatial diversity and ensures sufficient geometric variation for evaluating the effectiveness 
of different Cartesian estimates. 

 Target Trajectory: 

o Initial Position: [15000,10000] meters. 
o Initial Velocity: [−150,100] meters/second. 
o Target Path: The target is tracked along a predefined trajectory, where the true target positions 

are almost identical to the estimates generated by the algorithm. 

The trajectory was designed to evaluate tracking performance under dynamic motion conditions. 

 Transmitted Waveform Parameters: 

o Waveform Type: Gaussian Linear Frequency Modulated (Gaussian-LFM). 
o Carrier Frequency (fc): 12.5 GHz. 
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o Pulse Length (λ): Ranges between 40 and 80 microseconds. 
o Frequency Sweep (Δ𝑭 ): Ranges between 0.1 and 0.5 MHz. 

These waveform settings affect the resolution of time delay and Doppler shift, thereby impacting position and 
velocity estimates. 

 Signal-to-Noise Ratio (SNR): 

o The SNR at each receiver is modeled using the following relationship: 

𝑆𝑁𝑅, =    
𝑅

ସ

(𝑅்𝑅ோ)ଶ
                                                                      (4)  

where 𝑅=70000 meters. 
This SNR model reflects realistic signal degradation over distance and is crucial for simulating measurement 
noise. 
 

 Angle Measurement Error: 

o The standard deviation of the angle of arrival measurement (𝜎ఏ): 0.2 radians. 
This value accounts for angular uncertainty, which influences the accuracy of the angle-based 
Cartesian estimates. 

IV. SIMULATION RESULTS AND DISCUSSION 

This section presents the performance analysis of the proposed algorithm based on simulated 
scenarios. The results focus on how waveform characteristics—particularly pulse length—affect the 
accuracy of position and velocity estimates. The Cramer-Rao Lower Bound (CRLB) is used as a 
performance metric for evaluating each Cartesian estimate.. The figure 1 illustrates the relationship 
between Pulse Length (λ) measured in microseconds (μs) and the Cramer-Rao Lower Bound (CRLB) for 
position and velocity estimates in a multistatic radar system. The figure is divided into two main 
sections: 
1. CRLB for Position (RCRLB Position): 

 Y-axis: Represents the CRLB for position, which indicates the minimum achievable error in 
estimating the target's position. Lower values correspond to higher accuracy. 

 X-axis: Represents the pulse length (λ) in microseconds (μs). 
 Curves: The different curves (V1, V2, V3) represent various position estimates based on time 

delay and angle-of-arrival measurements from different receivers. 
Observations: 

 Effect of Pulse Length on Position CRLB: 

i. For position estimates (V1, V2, V3), the CRLB decreases with shorter pulse lengths 
(e.g., 10 μs). This is because shorter pulses provide higher resolution in time delay 
measurements, improving position estimation accuracy. 

ii. Conversely, longer pulse lengths (e.g., 40 μs) increase the CRLB for position, 
indicating reduced accuracy. 

 Differences Between Estimates (V1, V2, V3): 

i. V3 shows lower CRLB values compared to V1 and V2, especially with shorter pulses. 
This is because V3 relies on angle-of-arrival measurements from two receivers, 
providing higher accuracy. 

2. CRLB for Velocity (RCRLB Velocity): 
 Y-axis: Represents the CRLB for velocity, indicating the minimum achievable error in 

estimating the target's velocity. 
 X-axis: Represents the pulse length (λ) in microseconds (μs). 
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 Curves: The different curves (y1, y2, y3) represent various velocity estimates based on 
Doppler shift measurements from different receivers. 

Observations: 
 Effect of Pulse Length on Velocity CRLB: 

o For velocity estimates (y1, y2, y3), the CRLB decreases with longer pulse lengths 
(e.g., 40 μs). Longer pulses provide better Doppler resolution, improving velocity 
estimation accuracy. 

o Shorter pulse lengths (e.g., 10 μs) increase the CRLB for velocity, indicating reduced 
accuracy. 

 Differences Between Estimates (y1, y2, y3): 

o y3 shows lower CRLB values compared to y1y1 and y2, especially with longer 

pulses. This is because y3 relies on Doppler shift measurements from two receivers, 
providing higher accuracy. 

 
Fig.1 RCRLB vs pulse Length 

 
The Figure2 presents the Root Cramer-Rao Lower Bound (RCRLB) for position estimates in a multistatic 
radar system, focusing on the relationship between the target's position and the accuracy of the position 
estimates. The figure is divided into two main sections: 
1. RCRLB for Position: 

 Y-axis: Represents the RCRLB for position, which indicates the minimum achievable error in 
estimating the target's position. Lower values correspond to higher accuracy. 

 X-axis: Represents the target's x-position in meters (m). 
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 Curves: The different curves (V1, V2, V3) represent various position estimates based on time delay 
and angle-of-arrival measurements from different receivers. 

Observations: 
 Effect of Target Position on RCRLB: 

i. The RCRLB for position varies with the target's x-position. As the target moves further from 
the origin (e.g., from 4000 m to 11000 m), the RCRLB generally increases, indicating 
reduced accuracy in position estimation. 

ii. This increase in RCRLB is due to the geometric dilution of precision (GDOP), where the 
accuracy of position estimates degrades as the target moves further from the radar system. 

 Differences Between Estimates (V1, V2, V3): 

i. V3 shows lower RCRLB values compared to V1 and V2 across all target positions. This is 
because V3 relies on angle-of-arrival measurements from two receivers, providing higher 
accuracy. 

ii. V1 and V2, which rely on measurements from a single receiver, show higher RCRLB values, 
especially at greater distances. 

2. Target x-Position (m): 
 Y-axis: Represents the target's x-position in meters (m). 
 X-axis: Represents the target's x-position in meters (m), repeated for clarity. 
 Curves: The curves represent the same position estimates (V1, V2, V3) as in the first section, but with 

a focus on the target's x-position. 
Observations: 

 Consistency in RCRLB Trends: 

o The trends observed in the first section are consistent here. The RCRLB increases as the 
target moves further from the origin, and V3 consistently outperforms V1 and V2 in terms of 
accuracy. 

o The repeated x-axis emphasizes the importance of the target's position relative to the radar 
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system in determining the accuracy of position estimates. 

 
Fig.2 RCRLB vs Target x position 

 

V. CONCLUSION: 

This paper presents a novel algorithm designed to enhance target tracking in multistatic radar systems by 
jointly adapting the transmitted waveform and Cartesian estimate based on the target’s predicted state. The 
core of the approach lies in leveraging the Cramer-Rao Lower Bound (CRLB) as a performance metric to 
guide the dynamic selection process. The key results are: 

1. Improved Tracking Accuracy: The algorithm dynamically adapts to changes in the target's state and 
radar geometry, enhancing tracking accuracy. 

2. Reduced Power and Bandwidth Consumption: Only one Cartesian estimate is selected at each step, 
reducing power and bandwidth usage. 

3. System Stability: The use of a linear Kalman filter (LKF) ensures stable performance without the 
divergence issues associated with nonlinear filters. 

Compared to conventional methods that rely on fixed configurations, the proposed approach delivers 
significant improvements in both estimation precision and resource efficiency, particularly in dynamic 
tracking scenarios where the target's behavior and geometry change over time. Future research could further 
enhance the algorithm using advanced signal processing techniques to increase accuracy and reliability. 
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