
10th International Conference on Control Engineering &Information Technology (CEIT-2025)

Proceedings Book Series –PBS- Vol 23, pp.59-63

Copyright © 2025

ISSN: 2961-6611

Hybrid Data Duplication to Ensure

Adaptability and Availability
Kahina Benhabiles

 #1
, Djamel Eddine Zegour

 #2

#
 Laboratoire de la Communication dans les Systèmes Informatiques, Ecole nationale Supérieure d’Informatique ESI

Oued Smar, Algiers, 16309, Algeria
1
k_benhabiles@esi.dz

2
d_zegour@esi.dz

Abstract— Data replication is a long-standing research focus, especially challenging when servers use different data structures.

This leads to hybrid data duplication, where data is stored across varied structures to ensure adaptability (efficient structures)

and availability (resilience to failure). Unlike traditional replication, hybrid duplication explicitly considers structural

adaptability. The proposed system models clients and heterogeneous servers using concurrency techniques from data

replication. A RAM-based Java simulation was used to test the setup, laying the groundwork for future work on PBST

(Partitioned Binary Search Trees), which generates balanced search trees. The paper also defines hybrid duplication, contrasts

it with replication, and outlines replication techniques in distributed systems.

Keywords— Replication, Hybrid duplication, PBST, Concurrency.

I. INTRODUCTION

Data replication involves saving and maintaining copies of data on different storage nodes or servers.

Unlike replication, data duplication is not necessarily a synchronous or periodic process between the source

and the target. Data duplication refers to having one or more copies of data. While hybrid data duplication

shares the same basic definition, it differs in that the duplicated data are stored across different data structures

based on application needs and are transformed to match the target data structures.

Various replication algorithms have been proposed in distributed systems to address data placement issues,

such as availability, reliability, high latency, security and more [1]–[6], [8], [10]. The process of replication

should not negatively impact system performance or user experience. Choosing an appropriate data placement

method ensures optimal performance and resource utilization. It is crucial to adapt the replication strategy

based on four key questions: Which data to replicate? When to replicate? Where should the new replicas be

placed? And how many copies should be made [8]–[10]?

In the next section, we present a literature review on data replication in distributed systems.

A. Literature Review

Various replication techniques have been proposed across edge, fog, cloud, and distributed systems. In edge

computing, data and processing occur on edge servers [2], while fog computing enables localized processing

for IoT with enhanced security frameworks [1]. A dynamic resource and replica allocation model for edge

environments was also introduced to minimize node rental costs [2]. In P2P networks, [3] proposed a strategy

to reduce delay and increase query success.

For cloud environments, [4] presented EnE-Rep to reduce energy use via optimized resource allocation. A

machine learning-based approach [5] was introduced to dynamically generate hybrid replication strategies

tailored to specific scenarios. Reference [10] emphasized the need to balance energy consumption and profit

in cloud databases.

In grid systems, [6] proposed EA2-IMDG, using in-memory data storage for faster access and scalability. A

multi-objective replica placement strategy in HDFS was developed to balance storage and network load [7].

Hybrid heuristic methods like PSGWA [8] (combining PSO and GWO) and AOEHO [9] (combining AO

and EHO) were introduced to optimize replica placement, reduce access time, and enhance cost-efficiency in

fog and distributed systems.

B. Projected Work

Today, computer memory is abundant, widely available, and increasingly inexpensive. This makes it

advantageous to duplicate data, whether on the same machine or across distributed systems. Hybrid

duplication allows data to be represented in multiple forms (e.g., different types of trees), thus ensuring high

availability.

10th International Conference on Control Engineering &Information Technology (CEIT-2025)

Proceedings Book Series –PBS- Vol 23, pp.59-63

Copyright © 2025

ISSN: 2961-6611

PBST(n) [19] is a framework that provides a family of binary search trees whose balance level is controlled by

a partitioning parameter. This framework generalizes the well-known Red-Black Tree structure: in fact,

PBST(2) is exactly a Red-Black Tree. The balance quality of PBST(n) is inversely proportional to the

parameter n—the lower the n, the more balanced the tree.

The main idea of this work is to duplicate data on servers’ RAMs across p different trees (or servers) using

various PBST forms (e.g., PBST(2), PBST(3), ..., PBST(p+1)). We then propose the design of a library that

provides data operations with tunable performance, depending on application needs. These operations are

executed in parallel across the different tree types.

For example, one application may require fast updates with slower searches, while another may prefer the

opposite. Applications can also combine several trees to leverage the combined benefits of each type, using

synchronous and asynchronous replication protocols to maintain consistency.

In this short paper, we used simple data structures on the servers, namely an unsorted array, a sorted array,

and a binary search tree (BST). In a future extended version of this work, we plan to incorporate the PBST

family of trees.

Technically, this work addresses efficient data access management, focusing on concurrency control using

locks and the ROWA (Read One Write All) technique. Locks ensure thread-safe operations by allowing

multiple readers but only one writer at a time [13]–[15]. ROWA improves read performance and availability

by permitting reads from any replica, while writes must update all replicas—leading to higher write costs [11],

[12]. The proposed system was tested via a RAM-based simulation using Java, enabling multi-threaded

communication between nodes.

The paper covers data replication techniques (Section 2), hybrid duplication (Section 3), a preliminary test

platform (Section 4), and concludes in Section 5.

II. REPLICATION TECHNIQUES

An overview of the relevant studies is presented in the following references.

Reference [1] proposed a secure data replication model for edge and fog computing, combining RBAC and

ABAC to protect data integrity, confidentiality, and availability. Only authorized entities can access replicas,

and integrity checks ensure data consistency.

[2] focused on balancing storage overhead and user experience. They modeled and optimized replica

placement using real-world datasets, improving access efficiency while reducing overhead.

[3] introduced a replication strategy in peer-to-peer networks using NSGA-II, aiming to minimize access

delay and maximize query success rate, though it faces limitations like scalability and dynamic conditions.

[4] presented EnE-Rep, an energy-efficient replication strategy for cloud systems. It minimizes energy use

by selecting energy-efficient nodes and avoiding under/overloaded ones, reducing VM migrations.

[5] developed a machine learning-based hybrid replication approach that evolves over time. It generates

adaptable strategies optimized at runtime and stores the best solutions for reuse.

[6] used In-Memory Data Grid (IMDG) for replication and scheduling in grid environments. IMDG

improves performance via parallel processing and reduced latency, outperforming centralized models in

several metrics.

[7] proposed a replica placement method for HDFS using an improved multi-objective memetic algorithm

(IMOMAD), optimizing storage and network load while outperforming other algorithms.

[8] introduced PSGWA, combining PSO and GWO to find efficient replica placements that reduce data

access time and processing cost. It excels in static environments.

[9] presented AOEHO for fog computing, merging AO and EHO to replicate popular files near users. It

outperforms other methods in varied conditions.

[10] evaluated replication strategies in cloud databases, highlighting the trade-off between energy use and

profit. They proposed managing replicas to lower energy consumption and operational costs.

The next section will define data replication, duplication, and their distinctions.

III. REPLICATION VS HYBRID DUPLICATION

Data duplication refers to creating one or more copies of data, either in the same or different locations. It

can occur intentionally (e.g., for backup) or unintentionally (due to human or system error) [16],[17],[18].

Unlike replication, duplication is not necessarily synchronous or periodic, and duplicated data is independent

of the original. In contrast, data replication is a continuous, coordinated process aimed at ensuring fault

10th International Conference on Control Engineering &Information Technology (CEIT-2025)

Proceedings Book Series –PBS- Vol 23, pp.59-63

Copyright © 2025

ISSN: 2961-6611

tolerance, availability, and load balancing, with replicas kept up to date. The term "data duplication" is less

commonly used in literature compared to "data replication" or "deduplication." The next section introduces

hybrid duplication.

A. Hybrid Duplication

Hybrid duplication involves storing data across different data structures on servers based on application

needs. The data is transformed according to the target data structures. Hybrid duplication is an interesting

approach as it ensures both availability and adaptability. It offers higher performance and query flexibility at

the cost of complexity and storage. Replication is easier to implement, lighter, and consistent.

IV. TEST PLATFORM

To evaluate our proposal, we ran a RAM-based Java simulation on a single machine using a test platform

with three components: AppGenerator, clients, and servers.

AppGenerator produces insert, delete, and search operations, sent to clients, who forward them to servers

holding different data structures (unsorted array, sorted array, BST). Communication uses sockets

(AppGenerator ↔ Clients ↔ Servers) and threads (between servers). Updates use ROWA with locks for

concurrency, and a verification step ensures data consistency across servers. A timer signals the end of the

simulation and displays results. The architecture is illustrated in Fig. 1.

Fig. 1 architecture of the test platform: using ROWA method and locks

We ran two simultaions with data samples of size n = 5000 and 8000, respectively. For each server, we

calculate: the number of writes (cw) and reads (cr), the total time write time (Wtime) and read time (Rtime) in

milliseconds, and the average time of writes (avgW) and reads (avgR), also in milliseconds. The results are

shown in tables I and II.

TABLE I

N = 5000

Server Cw Cr Wtime Rtime avgW avgR

S1 2592 521 157 10 0.061 0.019

S2 2592 561 99 19 0.038 0.034

S3 2592 530 113 22 0.044 0.042

TABLE III

N = 8000

Server Cw Cr Wtime Rtime avgW avgR

S1 4040 854 219 7 0.054 0.008

S2 4040 863 116 27 0.029 0.031

10th International Conference on Control Engineering &Information Technology (CEIT-2025)

Proceedings Book Series –PBS- Vol 23, pp.59-63

Copyright © 2025

ISSN: 2961-6611

S3 4040 883 132 23 0.033 0.026

The results show that there is no concurrency, and they are coherent. The number of writes is the same for

all servers, indicating that each server contains the same data. However, the number of reads varies. Servers

exhibit different execution times depending on the data structure used and the order of operations.

V. CONCLUSION

This paper presents various replication techniques used in distributed systems. It defines hybrid duplication,

introduces a test platform, and concludes with findings and perspectives.

To evaluate our proposal, we conducted a RAM-based simulation of our implemented test platform using a

Java program on the same computer. To manage replicated data, we applied the ROWA strategy, and

employed locks to ensure proper concurrency control. In our future work, we plan to implement a hybrid

duplication approach for a specific data structure called PBST (Partitioned Binary Search Trees), which can

generate a family of binary search trees based on specified balance degree [19].

ACKNOWLEDGMENT

We thank Pr W.K Hidouci for his help and suggestions.

REFERENCES

[1] H. Alalibo, E.O. Bennett, N.D. Nwiabu, and D. Matthias, “Secure Data Replication in Edge and Fog Computing Environments,” International

Journal of Computer Science and Mathematical Theory (IJCSMT), vol. 10, no.3, pp. 187–201, 2024.

[2] C. Li, J. Bai, Y. Chen, and Y. Lu, “Resource and replica management strategy for optimizing financial cost and user experience in edge cloud

computing system,” Information Sciences, vol. 516, pp.33–55, 2020.
[3] A. Samimi, and M. Goudarzi, “A novel strategy for optimal data replication in peer‐to‐peer networks based on a multi‐objective optimisation –

NSGA‐II algorithm,” IET Networks, pp. 1–17, 2024.

[4] M. Alghobiri, “EnE-Rep: An Energy-Efficient Data Replication Strategy for Clouds,” Baltic J. Modern Computing, vol. 12, no.3, pp. 304-326,
2024.

[5] S.M.A. Bokhari, and O. Theel, “A Genetic Programming-Based Multi-Objective Optimization Approach to Data Replication Strategies for

Distributed Systems,” in 2020 IEEE Congress on Evolutionary Computation (CEC), 2020, Glasgow, UK, pp. 1-9.
[6] A.H. Guroob, “EA2-IMDG: Efficient Approach of Using an In-Memory Data Grid to Improve the Performance of Replication and Scheduling in

Grid Environment Systems,” Computation, vol. 11, no. 65, 2023.

[7] Y. Li, M. Tian, Y. Wang, Q. Zhang, D.K. Saxena, and L. Jiao, “A new replica placement strategy based on multi-objective optimisation for
HDFS,” Int. J. Bio-Inspired Computation, vol. 16, no. 1, pp.13–22, 2020.

[8] B. Arasteh, S.S. Sefati, S. Halunga, O. Fratu, and T. Allahviranloo, “A Hybrid Heuristic Algorithm Using Artificial Agents for Data Replication

Problem in Distributed Systems,” Symmetry, vol. 15, no. 487, 2023.
[9] A.a. Mohamed, L. Abualigah, A. Alburaikan, and H.A.E.-W. Khalifa, “AOEHO: A New Hybrid Data Replication Method in Fog Computing for

IoT Application,” Sensors, vol. 23, no. 2189, 2023.

[10] M. Seguela, R. Mokadem, and J-M. Pierson, “Comparing energy-aware vs. cost-aware data replication strategy,” in 10th International Green
and Sustainable Computing Conference (IGSC 2019), 2019, Alexandria, United States.

[11] M. Rabinovich, and E. D. Lazowska, “An efficient and highly available read-one write-all protocol for replicated data management,”

in Proceedings of the Second International Conference on Parallel and Distributed Information Systems, 1993, San Diego, CA, USA, pp. 56-65.
[12] N. Ahmad, A.N. Abdalla, and R.M Sidek, “Data Replication Using Read-One-Write-All Monitoring Synchronization Transaction System in

Distributed Environment,” Journal of Computer Science, vol. 6, no. 10, pp. 1095-1098, 2010.

[13] Y. Zhang, S. Shao, H. Liu, J. Qiu, D. Zhang, and G. Zhang, “Refactoring Java Programs for Customizable Locks Based on Bytecode
Transformation,” IEEE Access, vol. 7, pp. 66292-66303, 2019.

[14] Oracle Documentation. (2025) Java.Util.Concurrent.Locks API specification. [Online]. Available:

https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/concurrent/locks/package-summary.html
[15] Oracle Documentation. (2025) Java.Util.Concurrent.Locks API specification. [Online]. Available:

https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/concurrent/locks/ReentrantReadWriteLock.html

[16] Oracle. (2025) Data duplication Implications and Solutions. [Online]. Available: https://www.oracle.com/dz/data-duplication/

[17] Y. Guo, Q. Zhuge, J. Hu, J. Yi, M. Qiu, and E. H-M. Sha, “Data Placement and Duplication for Embedded Multicore Systems with Scratch Pad

Memory,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 32, no. 6, pp. 809-817, 2013.

[18] L. Li, Y. Zhang, and Y. Ding, “MT-DIPS: a new data duplication integrity protection scheme for multi-tenants sharing storage in SaaS,” Int. J.
Grid and Utility Computing, vol.9, no. 1, pp. 26–36, 2018.

[19] S. Zouana, and D.E. Zegour, “Partitioned binary search trees: a generalization of red black trees,” Computación y Sistemas, vol. 23, no. 4, pp.

1375–1391, 2019.

