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Abstract— This study examines resting-state functional connectivity in ASD-i.e., autism spectrum disorder- using EEG 

across delta, theta, alpha, and beta frequency bands. The results reveal distinct connectivity patterns in ASD, with 

widespread hyperconnectivity in frontal-parietal and frontal-occipital networks in higher frequency bands (alpha, 

beta) and reduced coherence in lower bands (delta, theta). Delta band analysis indicates impaired inter-regional 

communication, affecting sensory and cognitive integration. Theta band findings show left-hemisphere 

hyperconnectivity in ASD, contrasting with widespread right-hemisphere coherence in controls. Alpha and beta bands 

exhibit pervasive hyperconnectivity in ASD, especially in frontal midline regions, suggesting compensatory mechanisms 

for sensory and executive function deficits. In contrast, controls show localized, efficient connectivity, particularly in 

posterior regions, supporting typical sensory integration and visuospatial processing. These findings highlight 

frequency-specific connectivity alterations in ASD, where hyperconnectivity may both compensate for and disrupt 

neural processing. EEG-based connectivity measures could serve as biomarkers for ASD’s neurophysiological 

mechanisms, guiding future diagnostic and therapeutic approaches. 
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I. INTRODUCTION 

 

Autism spectrum disorder encompasses a group of neurodevelopmental conditions characterized by a broad range 

of symptoms affecting social interaction, communication, and behaviour. ASD exhibits significant heterogeneity in 

its presentation, with symptoms ranging from mild to severe, often accompanied by comorbidities such as 

intellectual impairments, seizures, and mood dysregulation [1]. Increasing evidence suggests that these diverse 

symptoms stem from atypical neural connectivity patterns within the brain, emphasizing the importance of studying 

functional connectivity to better understand ASD’s neurobiological foundations [2-5]. 

Resting-State Functional Connectivity (RSFC), which captures the temporal synchronization of neural activity 

between brain regions during rest, offers critical insights into the intrinsic network abnormalities associated with 

ASD [6]. EEG, a non-invasive, cost-effective neuroimaging tool with excellent temporal resolution, is particularly 

suited for investigating RSFC in clinical and developmental populations. By analysing EEG signals across multiple 

frequency bands, RSFC studies have the potential to identify neural biomarkers that can facilitate early diagnosis 

and monitor the progression of ASD [7]. 

In this study, RSFC is measured using coherence, a technique that quantifies the linear relationship between EEG 

signals in different brain regions at specific frequencies. Higher coherence values indicate strong connectivity, 

whereas lower values suggest weaker synchronization. Previous studies have highlighted its utility in capturing 

both local and long-range connectivity patterns in EEG data, making it a valuable tool for examining connectivity 

deficits in ASD [8, 9]. 

Although prior research has documented altered coherence patterns in individuals with ASD—such as reduced 

long-range coherence in the delta, theta, and alpha bands [10-13] and variable findings in short-range coherence— 

these results remain inconsistent. [10, 13-15]. Such variability underscores the need for standardized methodologies 

and advanced analytical approaches to reliably characterize the connectivity deficits associated with ASD. Moreover, 

there is a growing need to explore how coherence-based RSFC measures can differentiate ASD subgroups and relate 

connectivity abnormalities to behavioural manifestations. 

This study aims to address these gaps by investigating RSFC patterns in individuals with ASD through coherence 

analysis of EEG data. By leveraging coherence as a robust measure of connectivity, this study provides novel 
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insights into the neurophysiological mechanisms underlying ASD. The findings hold promise for enhancing 

diagnostic precision and informing the development of targeted interventions tailored to individuals across the 

autism spectrum. 

II. LITERATURE REVIEW 

 

Resting-state functional connectivity in ASD shows both hyperconnectivity and hypoconnectivity across 

frequency bands, indicating disrupted neural communication. Wang et al. (2020) found increased alpha and beta 

coherence in ASD, correlating with symptom severity, while Ghanbari et al. (2015) reported increased short-range 

delta and long-range alpha connectivity, alongside reduced complexity, linking these patterns to cognitive and 

sensory deficits [16] [17]. 

Theta connectivity has been associated with ASD traits, with Hill et al. (2022) finding increased right anterior theta 

connectivity predicting higher autistic traits. Alotaibi and Maharatna (2021) demonstrated the diagnostic 

potential of EEG-based connectivity using machine learning [3,4]. Early excessive alpha-band connectivity in 

infants, as observed by Orekhova et al. (2014), suggests ASD-related network inefficiencies develop over time [5]. 

Interventions targeting connectivity abnormalities have shown promise. Coben et al. (2014) found that EEG 

biofeedback reduced hyperconnectivity in ASD, improving symptoms. Yang et al. (2023) demonstrated that rTMS 

enhanced long-range connectivity and reduced symptoms in ASD participants [18, 19]. 

Multimodal imaging studies highlight ASD’s heterogeneous connectivity patterns. Mash et al. (2018) 

revealed both hyperconnectivity and hypoconnectivity using EEG, fMRI, and MEG. Wantzen et al. (2022) found 

reduced alpha- band connectivity in key resting-state networks, while Ronconi et al. (2020) reported beta-band 

hyperconnectivity in sensory regions, suggesting a compensatory mechanism [20-22]. Duffy and Als (2019) further 

identified distinct ASD subgroups based on EEG coherence, challenging traditional ASD classification [23]. 

Murray et al. (2024) linked increased alpha amplitude and suppression in ASD adults to sensory behaviors 

and brain structural differences, reinforcing the role of alpha activity in sensory dysfunction [24]. These findings 

suggest EEG-based connectivity measures as valuable biomarkers for ASD diagnosis and intervention, offering 

insights into its neurophysiological mechanisms. 

III. METHODOLOGY 

A. Participants and Experimental Design 

 

The dataset was obtained from The University of Sheffield's open-source repository and included EEG 

recordings from 28 individuals with ASD and 28 neurotypical controls, aged 18–68. Ethical approval was granted 

by the Health Research Authority (IRAS ID: 212171). EEG recordings were collected during a 2.5-minute resting- 

state session with eyes closed using the Biosemi Active Two EEG system [25]. 

 

B. Dataset Pre-processing 

 

To address inconsistencies in recordings, a data selection process was implemented, yielding a final sample of 16 

participants (eight ASD, eight controls). The analysis utilized 26 EEG electrodes, including Fp1, Fp2, Fpz, AF3, 

AF4, Fz, F7, FC1, C4, C5, CPz, CP1, CP4, TP8, Pz, P1, P2, P9, P10, POz, PO3, PO4, Oz, O1, O2, and Iz. EEG 

pre-processing involved referencing, filtering, artifact removal, and segmentation. Signals were re-referenced to the 

mastoids, reducing the electrode count to 25 to minimize noise [26] [27]. A 1–30 Hz bandpass filter was applied to 

isolate delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), and beta (12–30 Hz) frequencies, which are critical for 

cognitive and sensory functions [26] [28]. The data were then segmented into 160 one-second epochs to facilitate 

analysis [29]. Independent Component Analysis (ICA) was performed to eliminate artifacts associated with muscle 

activity and eye blinks [30]. 

 

C. Coherence Calculation 

 

Coherence is a frequency-domain measure used to evaluate functional connectivity by determining the 

consistency of phase relationships between two EEG signals over time. It provides essential information about the 

degree of synchronization between different brain regions. The coherence between two EEG signals at a specific 

frequency is defined as:[31]: 
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(1) 

where: 

 is the cross-spectrum between signals  and  

 and  are the power spectral densities of signals  and , respectively 

 ⟨⋅⟩ denotes averaging over multiple epochs. 

 

The coherence value ranges from 0 to 1, where values approaching 1 signify high synchronization between signals, 

while values near 0 indicate weak or no synchronization. 

 

1) Coherence Matrix and Connectivity Analysis: For each participant, a 25 × 25 coherence matrix was 

generated, representing pairwise connectivity between all electrode locations. Given the matrix’s symmetry, 

only the upper triangular portion was analysed, with diagonal elements excluded since coherence between 

an electrode and itself is always 1. To compare ASD and control groups, individual coherence matrices 

were averaged within each frequency band (delta, theta, alpha, beta). The difference in connectivity 

patterns was assessed by subtracting the ASD group’s averaged coherence matrix from that of the control 

group. 

2) Statistical Thresholding and Smoothing: To ensure meaningful differences, a statistical threshold was 

applied based on the number of epochs and frequency intervals (Table 1) used in coherence estimation [32]. 

The coherence deviation parameter was computed as: 

 

(2) 

 
TABLE 1 PRESENTS THE COMPUTED THRESHOLDS FOR DIFFERENT FREQUENCY BANDS 

 

Frequency Band Delta Theta Alpha Beta 

Threshold (σ) 0.002 0.002 0.001 0.0004 

 

Since raw coherence differences were difficult to interpret due to the large number of electrode pairs, the threshold 

was adjusted to 0.1 across all frequency bands to highlight significant connectivity variations. This structured 

approach ensures reliable EEG connectivity analysis, allowing for an in-depth investigation of functional 

connectivity differences between ASD and control participants. 

IV. RESULTS AND DISCUSSION 

The results reveal significant differences in functional connectivity between ASD and control participants across 

all frequency bands. Topographical figures illustrate these connectivity variations (red lines representing greater 

coherence in ASD participants and green lines indicating enhanced coherence in control participants), with ASD 

participants exhibiting widespread hyperconnectivity, particularly in the alpha and beta bands, while controls 

demonstrate more localized and efficient neural integration. 

Delta band analysis as in Fig. 1 (a) shows robust inter-regional coherence in controls, particularly in frontal, 

parietal, and occipital regions, supporting sensory and cognitive processes. This contrasts with ASD participants, 

who display weaker or absent connectivity in these regions, suggesting disruptions in low-frequency network 

communication crucial for sensory integration. These findings align with Wang et al. (2020) and Ghanbari et al. 

(2015), who reported stronger delta connectivity in neurotypical individuals, facilitating higher-order cognitive 

functions [16] [17]. 

Theta band connectivity as shown in Fig. 1 (b) reveals hemispheric differences, with ASD participants 

exhibiting localized left-hemisphere hyperconnectivity in frontal-parietal and frontal-central connections, while  

controls display widespread right-hemisphere coherence. This pattern, consistent with Chan et al. (2024) and Hill et 

al. (2022), suggests that theta hyperconnectivity in ASD may reflect compensatory mechanisms for sensory 

processing deficits, whereas controls maintain more integrated network dynamics [33]. 

Fig. 1 (c) and (d) show dense alpha and beta band connectivity differences between ASD and controls. 

Due to high connection density, coherence increases were clarified by dividing the data into separate 

topographical figures as presented in Figure 2. 
Alpha band Fig. 2 (a and b) show pervasive hyperconnectivity in ASD, particularly in frontal-parietal and 

frontal-occipital networks. ASD participants exhibit heightened alpha coherence in prefrontal and posterior regions, 

linked to atypical executive functioning and sensory integration. This aligns with Orekhova et al. (2014) and Coben 
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et al. (2014), who associated increased alpha-range connectivity with restricted and repetitive behaviors [34] [18]. 

Similarly, beta band Fig. 2 (c and d) analysis highlights excessive long-range connectivity in ASD, with 

connections originating from frontal midline regions and extending to parietal and occipital areas. This 

hyperconnectivity, reported by Wang et al. (2020) and Ronconi et al. (2020), may represent compensatory activity 

supporting detail-oriented visual processing but also reflect neural inefficiencies [16] [22]. 

Control participants, in contrast, display localized and efficient connectivity, particularly in posterior regions 

associated with visual-spatial processing. This pattern, noted by Mash et al. (2018) and Duffy et al. (2019), 

suggests that neurotypical individuals maintain structured and task-specific neural coordination, facilitating stable 

perceptual and cognitive functions [20] [23]. 

These findings emphasize the dual role of hyperconnectivity in ASD, where increased synchronization may 

compensate for deficits but also contribute to inefficient information processing. The results support previous 

studies, such as Yang et al. (2023) and Murray et al. (2024), which suggest that interventions targeting connectivity 

abnormalities, including repetitive transcranial magnetic stimulation (rTMS), may help reorganize dysfunctional 

networks and improve ASD symptoms[19] [24]. Future research should explore how frequency-specific 

connectivity alterations correlate with behavioral phenotypes to refine ASD diagnostics and therapeutic 

approaches. 
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Fig. 1 Topographic maps of coherence differences between ASD and controls in (a) delta, (b) theta, (c) alpha, and (d) beta bands. 

 

 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

Iz Iz Iz Iz 

Fig. 2 Topographic maps of coherence differences between ASD and controls in (a and b) alpha, (c and d) beta bands. 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

V. CONCLUSIONS 
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This study identified significant differences in resting-state EEG functional connectivity between ASD and 

neurotypical individuals. ASD participants exhibited widespread hyperconnectivity in alpha and beta bands, 

alongside disrupted delta and theta coherence, suggesting both compensatory mechanisms and network 

inefficiencies affecting sensory and cognitive processing. In contrast, controls displayed structured and efficient 

connectivity, particularly in posterior regions, supporting typical neural integration. These findings reinforce EEG- 

based functional connectivity as a potential biomarker for ASD and underscore the role of network dysregulation in 

the condition’s characteristic cognitive and behavioral challenges. 

The results also highlight the potential of interventions such as rTMS and EEG biofeedback in modulating 

atypical connectivity patterns and improving ASD symptoms. Future research should further investigate the 

developmental trajectory of these connectivity alterations, their relationship with behavioral phenotypes, and the 

effectiveness of targeted neuromodulation strategies. Advancing EEG-based biomarkers may enhance early 

diagnosis and personalized treatment approaches for ASD, improving long-term outcomes for affected individuals. 
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