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Abstract—This paper concerns the identification problem for large-scale controlled autoregressive autoregressive 

moving average (CARARMA) systems. Based on the decomposition technique, the M-decomposed recursive 

generalized extended least squares algorithm is developed to identify the parameters of large-scale (CARARMA) 

systems. The complication of the identification is that the noise information vector contains unknown variables. The 

method used to address this challenge is substituting these variables with their respective estimates, and the M- 

Decomposed RGELS algorithm is derived. The proposed algorithm has high computational efficiency compared to 

the traditional RGELS Algorithm because the covariance matrix of the main system in the traditional RGELS 

Algorithm is divided into M sub-covariance matrices. The proposed algorithm enhances the accuracy of parameter 

estimation while reducing the computational load, Finally, The simulation results demonstrate that the proposed 

algorithm has higher estimation accuracy under low noise variance, and model validation methods illustrates that 

the (SMAPE) progressively decreases, when the time sequence increases, which indicating a high level of algorithm 

performance. 

 

 

Keywords— parameter estimation, RGELS method, model Validation, large-scale system, M-decomposed. 

I. INTRODUCTION 

System Identification is a process in control engineering and signal processing where mathematical models 

are developed to represent the behavior of a dynamic system. The dynamic system could be a physical system, 

a biological system, an economic process, or any system that changes over time. It relies on collecting data from 

the dynamic system. This data includes input signals (stimuli or control inputs) and output signals (responses or 

measurements). Mathematical models are developed to describe the relationship between the input and output 

of the dynamic system. These models could be in the form of differential equations, transfer functions, state- 

space representations, or other mathematical formulations [1]. The procedure entails the estimation of the 

parameters of a mathematical model based on the gathered input-output data. This can be accomplished through 

a range of techniques, including least squares estimation, recursive estimation, or optimization algorithms. [2]. 

System identification is an important branch in the field of modern control and is an important method to 

establish systematic mathematical models from the combination of observation data and prior knowledge, This 

methodology has found extensive application across various fields for several decades, particularly in areas such 

as controller design and system analysis. A key component of system identification is parameter identification, 

which involves estimating parameters based on measurable data. The techniques for parameter estimation are 

versatile and can be utilized in numerous applications [3]. The main idea of the coupling identification concept 

is to decompose the original system into several subsystems and to estimate the parameters based on the coupled 

parameter relationships between these subsystems. In the field of system modeling and control. For instance, 

Yao and Ding derived a Two-stage least squares-based iterative identification algorithm for controlled 

autoregressive autoregressive moving average (CARARMA) systems [4]. Munya and Nasar Aldian derive an 

extended three-stage recursive identification algorithm of MISO for (CARARMA) systems [5]. The recursive 

identification and iterative identification methods are basic. The recursive least squares methods are the 
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commonly used parameter estimation approaches among many different parameter estimation techniques 

Recently, the recursive least squares (RLS) algorithm is always combined with other methods to identify 

complex systems. Parameter estimation plays an important role in control theory and application, because a 

robust controller usually has the assumption that the parameters of the systems should be known prior There 

exist lots of identification algorithms, e.g., the least squares (LS) algorithm [6]. The least square method is 

widely used for parameter estimation of time domain data. The least squares (LS) approach has widespread 

applications in many fields, such as statistics, numerical analysis, and engineering. In this method, the least 

squares estimate of the coefficients is obtained by way of minimizing the sum of the squares of the error terms 

where this sum is called the cost function, and error or residual itself is defined as the difference between the 

desired output and the estimated output [7]. One of the disadvantages of offline techniques is that they cannot 

take into account the feedback of the changes that the parameterization produces onto the parameterization itself 

and cannot be used when the array does not have an inverse [8]. Recursive methods have widely been used in 

signal filtering, modeling dynamic systems, and solving matrix equations. Unlike the Recursive estimation is a 

method for estimating the parameters of a system model in real-time, where new data is constantly arriving. 

This is in contrast to batch estimation methods, which estimate the parameters based on a fixed set of data. In 

recursive estimation, the parameter estimates are updated as each new data point arrives. This allows for real- 

time adaptive control, where the system parameters can be estimated and updated online, and without the need 

to stop the system and collect a new batch of data. In adaptive controllers, the observations are obtained 

sequentially in real-time. It is then desirable to make the computation of the least squares estimate recursively 

to save the computation time. In recursive (also called on-line) identification methods, the parameter estimates 

are computed recursively in time. Although the LS and RLS algorithms are capable of estimating system 

parameters, they are constrained by their inability to estimate the parameter of the noise model and their poor 

computing efficiency [9]. The Recursive Generalized Extended Least Squares (RGELS) algorithm is a powerful 

tool for real-time, dynamic regression modeling in environments where the relationships between variables and 

their associated errors change over time. Incorporating recursion and extended least squares, allows for efficient 

and accurate updates to model parameters as new data arrives. This paper is structured as follows. In Section 2 

introduces the system description and its identification model is given. In Section 3 M- decomposed RGELS 

for 8th order system. In Section 4 presents model validation. In Section 5 simulation results. Finally, the 

conclusions are given in section 6. 

II. SYSTEM DESCRIPTION 

The discrete-time, linear, time-invariant system is considered as depicted in Fig. 1, explained by 

(CARARMA), which is represented as [10]: 
 

8 
D(z) 

A(z)y(k) = ∑ B(z)u(k) + 
C(z) 

v(k), (1) 

 =1 

y(k) output sequences, u(k) input sequences, and  (n) is a stochastic white noise. A( ), B( ),  ( ) and  ( ) 

are polynomials and represented as: 

A(z) = 1 + a1z−1 + a2z−2 + ⋯ + an z−na, B(z) = b1z−1 + b2z−2 + ⋯ + bnbz−nb, 

C(z) = 1 + c1z−1 + c2z−2 + ⋯ + cn z−n , D(z) = 1 + d1z−1 + d2z−2 + ⋯ + dn z−nd, 

 
 ( ) 

 

 
 ( ) 

 

 
 ( ) 

 ( ) 

 ( ) ( ) 

 ( ) 

 ( ) 
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Fig. 1. The system described SISO models 

The parameter vectors θ are defined as: 

θ = [θT  θT], φ = [φT(n) φT(n)], 
T 

s n (n) s n θs = [a1 a2 … ana, b1 b2 … bnb] , 

φT(k) = [−y(k − 1), −y(k − 2), … − y(k − n ), u(k − 1), u(k − 2), … u(k − n )], 
s 

 

This equation can be written as: 

a b 
 

 

ys(k) = φT(k)θ , 
 

ys(k) = − (a1y(k − 1) + a2y(k − 2) + ⋯ + anay(k − na)) + b1u(k − 1) + b2u(k − 2) + ⋯ + bnbu(k − 

nb), 

The noise identification model is: 

w(k) = 
D(z) 

v(k), (3) 
C(z) 

And therefore 

w(k) = (1 − C(z))w(k) + D(z)v(k), 



θn = [c1 c2 … cn , d1 d2 … dnd] , 

φT(k) = [−w(k − 1), −w(k − 2), … − w(k − n ), v(k − 1), v(k − 2), … v(k − n )]T 
n c d 

 

And it can be written in a linear regression form as [11]: 

w(k) = φT(k)θ + v(k), 
n n 

w(k) = −c1w(k − 1) − c2w(k − 2) … − cn  w(k − nc) + d1v(k − 1) + d2v(k − 2) + ⋯ + dndv(k − nd) + 
v(k), (6) 

 

Finally, y(k) Totlal can be written as 
 

y(k) = φT(k)θ + φT(k)θ + v(k), 
s s n n 

y(k) = φT(k)θ + v(k), 

III. M- DECOMPOSED RGELS FOR 8TH ORDER SYSTEM 

In this section, M-decomposed has been develop based Recursive Generalized Extended Least Squares (M- 

RGELS) algorithm which can fully use the new arrived data. 
 

number of total parameters 
m = 

M 
, (9) 

number of total parameters = 16 
M=4 number of Matrix 

m=4 number of parameters 

From Fig. 1. It can be described in a linear regression form as 

 ( ) = φT(k)θ1 + φT(k)θ2 + φT(k)θ3 + φT(k)θ4 +  ( ), 
1 2 3 4 

θ1 = [a1, … , am]T, θ2 = [a(na−m+1), … , ana]T, 
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i 

j=1 i 

θ3 = [b1, … , bm]T, θ4 = [b(n −m+1), … , bn ]T, 

φ1(k) = [−y(k − 1), −y(k − 2), … , −y(k − m)]T, φ2(k) = [−y(k − (na − m + 1)), … , −y(k − na)]T, 

φ3(k) = [u(k − 1), u(k − 2), … , u(k − m)]T, φ4(k) = [u(k − (nb − m + 1)), … , u(k − nb)]T, 

Suppose nc=2 and nd = 2 

w(k) = −c1w(k − 1) − c2w(k − 2) + d1v(k − 1) + d2v(k − 2) + v(k), 

And it can be written in a linear regression form as 

w(k) = φT(k)θ5 + v(k), (12) 

Where 

φT(k) = [−w(k − 1), −w(k − 2), v(k − 1), v(k − 2)]T , θ5 = [c1 c2, d1 d2 ]T, 

Finally, y(k) can be written as [8] : 

y(k) = φT(k)θ1 + φT(k)θ2 + ⋯ + φT (k)θM + φT(k)θ5 + v(k), 
1 2 M 5 

a1 

y1 = −y(k − 1), −y(k − 2), … , −y(k − m). [ ⋮ ], 
am 

a(na−m+1) 

y2 = −y(k − (na − m + 1)), … , −y(k − na). [ 

 
b1 

⋮ ], 
ana 

y3 = u1(k − 1), u1(k − 2), … , u1(k − m). [ ⋮ ], 
bm 

 

b(nb−m+1) 

y4 = u1(k − (nb − m + 1)), … , u1(k − nb). [ ⋮ ], 
bnb 

y1(k) = y(k) − φT(k)θ2 − ⋯ − φT (k)θM+1, (14) 
2 M+1 

y2(k) = y(k) − φT(k)θ1 − φT(k)θ3 − ⋯ − φT (k)θM+1, 
1 3 M+1 

y3(k) = y(k) − φT(k)θ1 − φT(k)θ2 − φT(k)θ4 − ⋯ − φT (k)θM+1, 
1 2 4 M+1 

y4(k) = y(k) − φT(k)θ1 − φT(k)θ2 − φT(k)θ3 − φT (k)θM+1, 
1 2 3 M+1 

y5(k) = y(k) − φT(k)θ1 − φT(k)θ2 − φT(k)θ3 − φT(k)θ4 , (18) 
1 2 3 4 

From (14) – (18), equation (13) can be decomposed into five M- Decomposed identification models, 

yi(k) = φT(k)θi + v(k), ⅈ = 1,2,3,4,5 

These includes the parameters vectors θ1, θ2, θ3 , θ4 and θ5 Then, five criterion functions are defined as, 

Ji(θi): = ∑k  [yi (j) − φT(θi)]2, ⅈ = 1,2,3,4,5, 
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Let the partial derivation of Ji (θi), ⅈ = 1,2,3,4,5 with respect to θi be zero 
 

 Ji (θi) 

 θi 

 

 
θ  θ  (k) 

= −2φi(j) ∑k i[yi(j) − φT(j)θ i(k)] = 0, ⅈ = 1,2,3,4,5 , 
i  i 

Let θ (k) = [θ 1(k) θ 2(k) θ 3(k) θ 4(k) θ 5(k)]T ∈ ℝn be the estimate of θ = [θ1 θ2 θ3 θ4 θ5 ]T ∈ ℝn 

Minimizing the criterion functions and as a result, RGELS algorithm can be obtained for computing θ i(k): 

θ i = θ i(k − 1) + Li(k)[yi(k) − φT(k)θ i(k − 1)], 

Li(k) = pi(k − 1)φi(k)[1 + φT(k)Pi(k − 1)φi(k)]−1, 

pi(k) = [I − Li(k)φT(k)]pi(k − 1), Pi(0) = p0I, ⅈ = 1,2,3,4,5, 

The equations from (14)-(18) are substituted into equation (21) with ⅈ = 1,2,3,4,5, obtains 

θ 1(k) = θ 1(k − 1) + L1(k)[ ( ) − φT(k)θ2 − φT(k)θ3 − φT(k)θ4 − φT(k)θ5 − φT(k)θ 1(k − 1)], 
2 3 4 5 1 

θ 2(k) = θ 2(k − 1) + L2(k) [y(k) − φT(k)θ1 − φT(k)θ3 − φT(k)θ4 − φT(k)θ5 − φT(k)θ 2(k − 1)], 
1 3 4 5 2 

θ 3(k) = θ 3(k − 1) + L3(k) [y(k) − φT(k)θ1 − φT(k)θ2 − φT(k)θ4 − φT(k)θ5 − φT(k)θ 3(k − 1)], 
1 2 4 5 3 

θ 4(k) = θ 4(k − 1) + L4(k) [y(k) − φT(k)θ1 − φT(k)θ2 − φT(k)θ3 − φT(k)θ5 − φT(k)θ 4(k − 1)], 
1 2 3 5 4 

θ 5(k) = θ 5(k − 1) + L5(k) [y(k) − φT(k)θ1 − φT(k)θ2 − φT(k)θ3 − φT(k)θ4(k) − φT(k)θ 5(k − 1)] 
1 2 3 4 5 

Equations (22) – (26) include the unknown parameter θi ⅈ = 1,2,3,4,5. The Replacement of the unknown θi 

in (22)–(26) with their estimates θ i(k − 1) is the solution: 

θ 1(k) = θ 1(k − 1) + L1(k) [y(k) − φT(k)θ 2(k − 1) − φT(k)θ 3(k − 1) − φT(k)θ 4(k − 1) − 
2 3 4 

φT(k)θ 5(k − 1) − φT(k)θ 1(k − 1)], 
5 1 

= θ 1(k − 1) + L1(k) [y(k) − φT(k)θ (k − 1)], 

θ 2(k) = θ 2(k − 1) + L2(k) [y(k) − φT(k)θ 1(k − 1) − φT(k)θ 3(k − 1) − φT(k)θ 4(k − 1) − 
1 3 4 

φT(k)θ 5(k − 1) − φT(k)θ 2(k − 1)] 
5 2 

= θ 2(k − 1) + L2(k) [y(k) − φT(k)θ (k − 1)], 

θ 3(k) = θ 3(k − 1) + L3(k) [y(k) − φT(k)θ 1(k − 1) − φT(k)θ 2(k − 1) − φT(k)θ 4(k − 1) − 
1 2 4 

φT(k)θ 5(k − 1) − φT(k)θ 3(k − 1)] 
5 3 

= θ 3(k − 1) + L3(k) [y(k) − φT(k)θ (k − 1)], 

θ 4(k) = θ 4(k − 1) + L4(k) [y(k) − φT(k)θ 1(k − 1) − φT(k)θ 2(k − 1) − φT(k)θ 3(k − 1) − 
1 2 3 

φT(k)θ 5(k − 1) − φT(k)θ  (k − 1)] 
5 4 4 

= θ 4(k − 1) + L4(k) [y(k) − φT(k)θ (k − 1)], 

θ 5(k) = θ 5(k − 1) + L5(k) [y(k) − φT(k)θ 1(k − 1) − φT(k)θ 2(k − 1) − φT(k)θ 3(k − 1) − 
1 2 3 

φT(k)θ  (k − 1) − φT(k)θ  (k − 1)] 
4 4 5 5 

= θ 5(k − 1) + L5(k) [y(k) − φT(k)θ (k − 1)], 

| 
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4 

5 

φ5(k) includes the unknown noise terms w(k − ⅈ)and v(k − ⅈ), and thus these estimated parameters cannot 

be generated based on the above algorithms in (22)–(26). The solution is to Replacing w(k − ⅈ) and v(k − ⅈ)with 

their estimates  (k − ⅈ)and   (k − ⅈ), and obtain 
 

 

 

φ 5(k) = [− (k − 1), − (k − 2),   (k − 1),   (k − 2)]T , φ (k) = 

 

 
Now, equation (10) can be written as, 

φ1 
⎡φ2

⎤ 

φ3 

⎢φ4⎥ 
[  5 ] 

 

 
∈ ℝn, 

w(k) = y(k) − φT(k)θ1 − φT(k)θ2−φT(k)θ3 − φT(k)θ4, v(k) = w(k) − φT(k)θ5, 
1 2 3 4 5 

The estimated w(k) and v(k) can be computed by 

 (k) = y(k) − φT(k)θ 1 − φT(k)θ 2 − φT(k)θ 3 − φT(k)θ 4, ,   (k) =  (k) − φ 5(k)θ 5, 
1 2 3 4 

Thus, M-Decomposed Recursive Generalized Extended parameter estimation algorithm for computing the 

estimated parameters and of CARARMA model is obtained as 

θ 1(k) = θ 1(k − 1) + L1(k)[y(k) − φ T(k)θ (k − 1)], 

L1(k) = p1(k − 1)φ1(k)[1 + φT(k)P1(k − 1)φ1(k)]−1, 

 1( ) = [  −  1( )  ( )] 1(  − 1),  1(0) =  0   , 
1   

 1( ) = [− (  − 1), − (  − 2), … , − (  −  )]  ∈ ℝ  , 

  2( ) =   2(  − 1) +  2( )[ ( ) −    ( )  (  − 1)], 

 2( ) =  2(  − 1) 2( )[1 +   ( ) 2(  − 1) 2( )]−1, 

 2( ) = [  −  2( )  ( )] 2(  − 1),  2(0) =  0   , 
2   

 2( ) = − (  − (   −   + 1)), … , − (  −   )]  ∈ ℝ  , 

  3( ) =   3(  − 1) +  3( )[ ( ) −    ( )  (  − 1)], 

 3( ) =  3(  − 1) 3( )[1 +   ( ) 3(  − 1) 3( )]−1, 

 3( ) = [  −  3( )  ( )] 3(  − 1),  3(0) =  0   , 
3 b 

 3( ) = [ 1(  − 1),  1(  − 2), … ,  1(  −  )]  ∈ ℝ  , 

  4( ) =   4(  − 1) +  4( )[ ( ) −    ( )  (  − 1)], 

 4( ) =  4(  − 1) 4( )[1 +   ( ) 4(  − 1) 4( )]−1, 

 4( ) = [  −  4( )  ( )] 4(  − 1),  4(0) =  0   , 
4   

 4( ) = [ 1(  − (   −   + 1)), … ,  1(  −   )]  ∈ ℝ b, 

  5( ) =   5(  − 1) +  5( )[ ( ) −    ( )  (  − 1)], 

 5( ) =  5(  − 1)  5( )[1 +    ( ) 5(  − 1)  5( )]−1, 
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5 

 5( ) = [  −  5( )  5( )] 5(  − 1),  5(0) =  0   +  , 

  ( ) =  ( ) −   ( )  1 −   ( )  2 −   ( )  3 −   (k)θ 4, 
1 2 3 4 



  (k) =  (k) − φ T(k)θ 5, 

− (k − 1), − (k − 2) T 
φ 5(k) = [ 

  (k − 1),   (k − 2) 
] , 

φ (k) = [φ T(k), φ T(k), φ T(k), φ T(k), φ T(k)]T ∈ ℝn, 

  ( ) 

1 

 
 T( 

2 

 
)  T( 

3 

 
)  T( 

4 

 )  T( 

5 
 

)  T T 
 n, 

θ k = [θ1 k , θ2 k , θ3 k , θ4 k , θ5 (k)]  ∈ ℝ 

IV. MODEL VALIDATION 

Model validation is a crucial aspect of simulation model development. In this section, the effectiveness of the 

proposed algorithm will be proved using Symmetric Mean Absolute Percentage Error (SMAPE) is selected. 

Generally, SMAPE is commonly used to validate the model by comparing the predicted values to the actual 

values [12]. 

It is defined as 
 

SMAPE = 
1 
∑S 

 

|y(n)− (n)| , (51) 
S  n=1 (|y(n) +  (n)|)/2 

where n represents the time step, y(n) represents the target output,  (n) represents the predicted output, and 

S represents the number of samples. SMAPE can minimize the impact of data size and units, allowing it to 

reflect the relative magnitude of errors effectively. A higher SMAPE value indicates a greater discrepancy 

between target and predicted values, signifying poorer predictive performance. 

V. SIMULATION RESULTS 

The effectiveness of the suggested algorithm is demonstrated by considering the following eight-order 

system: 
( ) = 1 + 0.192 −1 + 0.15 −2 + 0.032 −3 + 0.20  −4 + 0.12 −5 + 0.021 −6 + 0.10 −7 + 0.14 −8 

( ) = 0.008 −1 + 0.13 −2 + 0.14 −3 + 0.03  −4 + 0.16 −5 + 0.92 −6 + 0.4 −7 + 0.43 −8 

( ) = 1 + 0.09 −1 + 0.57 −2  ( ) = 1 + 0.16 −1 + 0.27 −2 

 1 = [0.192,0.15,0.032,0.20] ,  2 = [0.12,0.021,0.10,0.14] ,  3 = [0.008,0.13,0.14,0.03] , 

 4 = [0.16,0.92,0.4,0.43] ,  5 = [0.09,0.57,0.16,0.27] , 

u(k) is taken as a white sequence with a Gaussian distribution of m = 0 and  2 
 1

2
 v(k) is produced a 

Gaussian white noise with m = 0 and  2 
 0.1

2
 . In order to assess this algorithm's effectiveness, the algorithm's 

predicted output is plotted together with its actual output and the residual as demonstrated in Fig. 2 
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Fig. 2. Residual of SISO system using RGELS algorithm. 

This figure shows that the predicted output of this suggested algorithm is very close to the actual output and the 

residual is very close to zero which means, the effectiveness of this algorithm is high. 

For further explanation, the window between n = 850 and n = 900 has been used as provided in Fig. 3 
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Fig. 3. Residual of SISO system using RGELS algorithm between n = 850 and n = 900. 

This figure indicates Data from n =850 to n =900 has been taken to show the accuracy of the identified 

algorithm. The figure shows the predicted outputs follow the actual outputs. which concludes that the estimated 

model fits the actual data. 

 

The estimation error is calculated using the formula below, and is demonstrated in Fig. 4 [10]: 

 
2 2 2 2 

δ = √
 θ 1−θ1  + θ 2−θ2  + θ 3−θ3  + θ 4−θ4  

, (52) 
 θ1 2+ θ2 2+ θ3 2+ θ4 2 

Actual Output 

Predicted Output 

Residual 

Actual Output 

Predicted Output 

Residual 
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Fig. 4. The parameter estimation error of the RGELS algorithm. 

The figure illustrates that the estimation errors decrease with the number of sequences increases. This 

demonstrates the efficacy of the suggested algorithm. Fig. 5 shows the validation of this technique utilized 

(SMAPE): 
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Fig. 5. Symmetric Mean Absolute Percentage Error (SMAPE) of RGELS algorithm versus the sequences. 

From the figure, (SMAPE) gets smaller and smaller as the duration of the sequence increases. This suggests 

that the algorithm's performance is high. 

Applying this algorithm with the different noise variance, when (  2 
 0.1

2
 ) and (  2 

 0.6
2
 ) to estimate the 

parameters of this system and based on this result, the parameter estimation errors have been computed and 

plotted as demonstrated in fig. 6. In addition to, the residuals have been plotted too as shown in Fig. 7. 
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Fig. 6. RGELS algorithm with different noise (0.1) and (0.6) versus the sequences. 

From this figure, the parameter estimation errors with noise variance ((  2 
 0.1

2
 ) is lower than the parameter 

estimation errors with noise variance ((  2 
 0.6

2
 ). Thus, the following conclusion has been drawn, in general, 

the parameter accuracies increase under decreasing noise variance. 
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Fig. 7. Show that the noise variance (( 2 = 0. 12) is lower than the parameter estimation errors with noise variance (( 2 = 0. 62). 

 

The window between n = 1000 and n = 1100 has been utilized for additional explanation, as seen in Fig. 8. 
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Fig. 8. Show the Residual when the noise variance (0. 12) and (0. 62) between n = 1000 and n = 1100. 
 

 

The figure illustrates that the residual signal intensity increases with the noise variance increasing. Thus, it 

becomes more challenging for the proposed algorithm to accurately estimate the actual output. 

VI. CONCLUSIONS 

In this paper, the M-decomposed recursive generalized extended least squares algorithm has been derived for 

large-scale controlled autoregressive autoregressive moving average (CARARMA) systems. By using the M- 

Decomposed technique, the main system has been divided into M-subsystems and the dimension of the 

information vector considerably decreases. The main contribution of the proposed identification method has a 

high computation efficiency for large-scale systems compared with conventional recursive generalized extended 

least squares algorithm. The simulation results indicate that the proposed algorithm achieves higher estimation 

accuracies under lower noise variance, and the effectiveness of the proposed method can be improved by 

increasing the time sequences. The methods used in this paper can be extended to study the identification of 

other linear systems, nonlinear systems, multiple-input single-output systems, or multiple-input multiple-output 

systems. 
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