

An ADM-based approach for generating ASTM

models from PHP code legacy

Amine Moutaouakkil #1, Samir Mbarki #2

MISC Laboratory, Faculty of Science, Ibn Tofail University
BP133, Kenitra, Morocco

1amine.moutaouakkil@hotmail.fr

2mbarkisamir@hotmail.com

Abstract— Most of websites are written in PHP language (82,5%
in 2017-02-11) and some of them are still written in PHP4 legacy

language. With the rise of new web technologies such as web 2.0,

Javascript based technologies : Jquery, Bootstrap. the need to

modernize PHP web sites increases.
The migration process of a system from an execution

environment to another implementation platform is performed

for various reasons: more secure platform, having more

possibilities such as web services etc. This process constitutes a

set of complicated operations that takes time and requires effort.

This problematic involves a complete rewrite of the application

adapted to the target platform. To realize this migration in an

automated and standardized way, many approaches have tried

to define standardized engineering processes. Architecture

Driven Modernization (ADM) defines an approach to
standardize and automate the reengineering process. This

research project aims to find a way to represent, using the ADM

approach, PHP web applications in form of ASTM models.

Keywords— Architecture driven Modernization (ADM),

Abstract Syntax Tree Meta-Model (ASTM), Reverse

Engineering, Parsing, Model-driven Engineering, web

applications.

I. INTRODUCTION
The Architecture-driven Modernization (ADM) [1] is an

Object Management Group (OMG) [2] initiative related to the

reverse engineering domain. This initiative has been proposed

to enhance the classical reverse engineering processes by

introducing the Model-driven Architecture (MDA) [3]

concepts. In the same way that the MDA approach provides a

leading role to the models, the ADM approach introduces

several concepts to formalize the RE processes based on

models too.
PHP is de facto standard language in web development,

other than websites, more web applications are developed

using this language. The need to immigrate both from and to

this language has increased.
We defined an ADM based approach to get ASTM models

from PHP models and then adapt the ASTM meta-model in

order to handle the PHP concepts which do not exist in

current version of the meta-model. This approach has taken

advantage of the potential of the Architecture Driven

Modernization (ADM) to modeling the knowledge which will

be extracted from the legacy program artifacts.

In this paper, we introduce the extraction of ASTM
models from PHP source code which involve the adaptation
of the ASTM meta-model.

The first part gives a brief presentation of the ADM

initiative and presents some concepts related to this domain.

In the second part, the adaptation of the ASTM meta-model

and T2M/M2M transformations constitute the key concepts

of the current study. A conclusion will take over most of the

paper as well as future prospects.

II. CONTEXT

A. Software Reverse Engineering Process

Reverse engineering is the process of examining an already

implemented software system in order to represent it in a

different form or formalism and at a higher abstraction level

[4].

B. Model Driven Engineering

MDE [5] is a Software Engineering paradigm. MDE

introduces to the Software Engineering models-based

approaches instead of code-centric ones.

C. Model Driven Reverse Engineering

MDRE [6] is the application of Model Driven Engineering

(MDE) principles and techniques to RE in order to get model

based views from legacy systems. The MDRE is based on

two main phases : Model Discovery which is extracting

information from source code by using parsers, and then

represent this information in form of models. And Model

Understanding which is applying Model to Model

transformations on extracted information to get a higher

abstraction level presentation of the information.

D. Model Driven Architecture

The MDA (Model Driven Architecture) is an OMG

concept which suggests to base the software development on

specific models using standards. With these models, we can

focus on the logical conception of a program, and from them

it is possible to realize transformations which generate code

or other models for a particular technology or with higher

abstract level. MDA defines a framework to realize these

models. The models are instance of meta-models. A meta-

model is the definition of a set of concepts and their

relationship using a class diagram. The structuring of a meta-

6ème Conférence Internationale en Automatique & Traitement de Signal (ATS-2021)

Proceedings Book Series –PBS- Vol 1, pp.27-34

Copyright © 2021

ISSN: 2961-6611

model is it-self provided by a meta-meta-model. A meta-

meta-model is defined by MOF language [7]. The MDA is

based on three modeling levels : Computation Independent

Model (CIM), Platform Independent Model (PIM) and

Platform Specific Model (PSM). To obtain a model in a level

(target model) from another model from other level (source

model), model transformations can be used.

E. Architecture Driven Modernization
Architecture Driven Modernization (ADM) is an initiative

proposed by OMG to standardize and automate the

reengineering process. ADM is based on seven standards

meta-models to represent the information involved in a

software reengineering process, but currently only three of

them are available: Abstract Syntax Tree Meta-Model

(ASTM) [8], Knowledge Discovery Meta-Model (KDM) [9]

and Structured Metrics Meta-Model (SMM) [10]. In the

current study, only ASTM and KDM standards are

considered useful for the purpose. ASTM allows modeling

the legacy code in form of Abstract Syntax Tree. Otherwise,

KDM allows defining models (KDM models) at a higher

abstraction level representing semantic information about a

software system.

context and the exploitation of PHP technologies considered

as the de facto language and platform in web engineering.

A. The Approach

To represent the information in PHP code in the form of

ASTM models, we have found out that we have to write a

PHP Discoverer first so that existing PHP code can be

represented as an Ecore model. After dealing with the

creation and operation of discoverers. It turned out that the

incorporation and implementation is extremely complex.
We looked for alternative ways to transform PHP code into

XMI, or ecore models.
After searching and trying the available parsers for PHP,

one of them was interesting, glayzzle/php-parser [12]. This

parser is working good, it parses the PHP code and gets an

abstract syntax tree (AST), obtained tree is an intermediate

step to get ASTM models after transformations.

The approach is covering the two phases of Model Driven

Reverse Engineering : Model Discovery and Model

Understanding.
 Model Discovery : Get the AST tree, which is a

Specific ASTM Model, from PHP source code
 Model Understanding : Apply model to model

PHP

Source

code

Specific

ASTM

Model

Generic

ASTM

Model

KDM
Model

transformation on the AST tree to get ASTM model

which is a Generic ASTM model

PHP AST ASTM
Source Tree Model

Parser

M2M

Tranformation

M2M

Tranformation

code

Fig. 1 Models Extraction Process Model

Discovery
Model

Understanding

F. QVT Transformation Standard
QVT (Query/View/Transformation) [11] is a standard set

of languages for model transformation defined by the OMG.
The QVT standard defines three model transformation

languages. All of them operate on models which conform

to Meta-Object Facility (MOF) 2.0 metamodels; the
transformation states which metamodels are used. A

transformation in any of the three QVT languages can itself

be regarded as a model, conforming to one of the metamodels

specified in the standard.
 QVT-Operational is an imperative language

designed for writing unidirectional transformations.
 QVT-Relations is a declarative language designed to

permit both unidirectional and bidirectional model
transformations to be written.

 QVT-Core is a declarative language which has not
yet a full implementation.

III. CONTRIBUTION

In the current study, the aim is to establish the link
between new technologies involved in the reengineering

Fig. 2 : Approach MDRE Phases

Detailed steps of our approach :
 Parse PHP code to extract Abstract syntax Tree

(AST)
 Transform the AST tree from Json format to XML

format (xmi)
 Get the XSD schema from the AST in XML format
 Generate the AST Metamodel in ecore format from

the XSD schema
 Write an adapted minimalist ASTM metamodel

based on the OMG ASTM metamodel
 Write a transformation script in QVT-Operational

language to transform the AST model to ASTM

model

6ème Conférence Internationale en Automatique & Traitement de Signal (ATS-2021)

Proceedings Book Series –PBS- Vol 1, pp.27-34

Copyright © 2021

ISSN: 2961-6611

Fig. 3 : ADM-based Approach

B. The Approach Case Study
ASTM models will be extracted from a simple PHP class :

Vegetable Class which has two properties, a constructor and

two functions.

<?php
class Vegetable {

private $edible;
private $color;
public function __construct($edible, $color) {

$this->edible = (int) $edible;
$this-> color = (int) $color;

}
public function is_edible () {

return $this-> edible;
}
public function what_color () {

return $this-> color;
}

}
?>

Fig. 4 : Vegetable Class

C. Obtained AST tree
Using Glayzzle PHP Parser, we obtain this Json AST tree

from the class above.

{
"kind":"program",
"children":[
{"kind":"class","name":"Vegetable","isAnonymous":f
alse,"extends":null,"implements":null,

"body":[
{"kind":"property","name":"edible","value":

null,"isAbstract":false,"isFinal":false,"visibilit
y":"private","isStatic":false},

{"kind":"property","name":"color","value":n
ull,"isAbstract":false,"isFinal":false,"visibility
":"private","isStatic":false},

{

"kind":"method","name":"__construct",
"arguments":[

{"kind":"parameter","name":"edible","value"
:null,"type":null,"byref":false,"variadic":false,"
nullable":false},

{"kind":"parameter","name":"color","value":
null,"type":null,"byref":false,"variadic":false,"n
ullable":false},

],
…

Fig. 5 Obtained AST tree

D. XML AST tree

Using a Json to XML converter, we obtain this XML AST
tree from the Json AST tree above.

<?xml version="1.0" encoding="UTF-8" ?>
<root>
<kind>program</kind>
<children>
<kind>class</kind>
<name>Vegetable</name>
<isAnonymous>false</isAnonymous>
<extends/>
<implements/>
<body>

<kind>property</kind>
<name>edible</name>
<value/>
<isAbstract>false</isAbstract>
<isFinal>false</isFinal>
<visibility>private</visibility>
<isStatic>false</isStatic>

</body>
<body>

<kind>property</kind>
<name>color</name>
<value/>
<isAbstract>false</isAbstract>
<isFinal>false</isFinal>
<visibility>private</visibility>
<isStatic>false</isStatic>

</body>

6ème Conférence Internationale en Automatique & Traitement de Signal (ATS-2021)

Proceedings Book Series –PBS- Vol 1, pp.27-34

Copyright © 2021

ISSN: 2961-6611

<body>

<kind>method</kind>
<name>__construct</name>
<arguments>
<kind>parameter</kind>
<name>edible</name>
<value/>
<type/>
<byref>false</byref>
<variadic>false</variadic>
<nullable>false</nullable>

</arguments>
…

Fig. 6 XML AST tree

E. AST extracted XSD schema
From the XML AST tree, we have generated an XSD

Schema.

<?xml version="1.0"?>
<xs:schema
xmlns:xs="http://www.w3.org/2001/XMLSchema"
attributeFormDefault="unqualified"
elementFormDefault="qualified">
<xs:element name="root" type="rootType"/>
<xs:complexType name="childrenType">
<xs:sequence>

<xs:element type="xs:string" name="kind"/>
<xs:element type="xs:string" name="value"

minOccurs="0"/>
<xs:element type="xs:string" name="operator"

minOccurs="0"/>
<xs:element type="leftType" name="left"

minOccurs="0"/>
<xs:element type="rightType" name="right"

minOccurs="0"/>
<xs:element type="exprType" name="expr"

minOccurs="0"/>
<xs:element type="xs:string" name="name"

minOccurs="0"/>
<xs:element type="xs:string" name="name"

minOccurs="0"/>
<xs:element type="xs:string"

name="isAnonymous" minOccurs="0"/>
<xs:element type="xs:string" name="extends"

minOccurs="0"/>
<xs:element type="xs:string"

name="implements" minOccurs="0"/>
<xs:element type="bodyType" name="body"

maxOccurs="unbounded" minOccurs="0"/>
<xs:element type="xs:string"

name="isAbstract" minOccurs="0"/>
<xs:element type="xs:string" name="isFinal"

minOccurs="0"/>
</xs:sequence>

</xs:complexType>
<xs:complexType name="bodyType">
<xs:sequence>

<xs:element type="xs:string" name="kind"/>

<xs:element type="xs:string" name="name"
minOccurs="0"/>

<xs:element type="xs:string" name="value"
minOccurs="0"/>

<xs:element type="argumentsType"
name="arguments" maxOccurs="unbounded"
minOccurs="0"/>

<xs:element type="xs:string" name="byref"
minOccurs="0"/>

<xs:element type="xs:string" name="type"
minOccurs="0"/>

<xs:element type="xs:string" name="nullable"
minOccurs="0"/>

<xs:element type="bodyType" name="body"
minOccurs="0"/>

<xs:element type="xs:string"
name="isAbstract" minOccurs="0"/>

<xs:element type="xs:string" name="isFinal"
minOccurs="0"/>

<xs:element type="xs:string"
name="visibility" minOccurs="0"/>

<xs:element type="xs:string" name="isStatic"
minOccurs="0"/>

<xs:element type="childrenType"
name="children" maxOccurs="unbounded"
minOccurs="0"/>

</xs:sequence>
</xs:complexType>
…

Fig. 7 : AST extracted XSD schema

F. AST generated Metamodel

Using EMF Eclipse model importer from schema, we

obtain the simplified AST meta-model in ecore format from

the XSD schema above.
The ASTM meta-model is in EMOF language Meta-Object

Facility (MOF). A supporting standard of MOF is XMI,

which defines an XML-based exchange format for models.
The meta-model is shown with help of Sample Ecore

Model Editor in Eclipse.

Fig. 8 AST generated Metamodel

6ème Conférence Internationale en Automatique & Traitement de Signal (ATS-2021)

Proceedings Book Series –PBS- Vol 1, pp.27-34

Copyright © 2021

ISSN: 2961-6611

G. OMG ASTM Meta-model
ASTM meta-model provided by OMG.

Fig. 9 OMG ASTM Meta-model

I. QVT-O Transformation project

Fig. 12 QVT-O Transformation Project

J. QVT-O Transformation script

We have defined a mapping table between AST model
elements and ASTM model elements.

TABLE I

AST ELEMENTS TO ASTM ELEMENTS MAPPING

AST element ASTM element
ChildrenType OwnedElementsType1
BodyType BodyDeclarationsType
ArgumentsType ParametersType
... ...

Fig. 10 OMG ASTM Meta-model Types

H. Minimalist ASTM Meta-model
Current OMG ASTM meta-model needs to be simplified,

to make the transformation easier for our example.

Fig. 11 ASTM Target Metamodel

Based on the mapping table, we have written a QVT-O

transformation script to map AST model elements to ASTM

model elements.

modeltype AST uses 'http://AstMM';
modeltype ASTM uses 'http://AstmMM';

transformation ast2astm(in ast : AST, out ASTM);

main() {

ast.objects()[AST::ChildrenType]->map R1();
ast.objects()[AST::BodyType]->map R2();
…

}

mapping AST::ChildrenType::R1() :
ASTM::OwnedElementsType1 {

if (self.kind<>'inline'){
name := self.name;
}

}

mapping AST::BodyType::R2() :
ASTM::BodyDeclarationsType {

if (self.kind='property'){
type := self.kind;
modifier := self.map R21();
fragments := self.map R22();
}
else if (self.kind='method'){
type := self.kind;

6ème Conférence Internationale en Automatique & Traitement de Signal (ATS-2021)

Proceedings Book Series –PBS- Vol 1, pp.27-34

Copyright © 2021

ISSN: 2961-6611

}

…

modifier := self.map R21();
fragments := self.map R22();
parameters := self.arguments.map R23();
}

Fig. 13 QVT-O Transformation Script

After applying the approach, we obtain the following result.

Obtained ASTM models are Ecore Models in XMI format.

<?xml version="1.0" encoding="UTF-8"?>
<xmi:XMI xmi:version="2.0"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:AstmMM="http://AstmMM"
xsi:schemaLocation="http://AstmMM

K. Case Study Results

The XML AST tree obtained above is used as input in the
transformation.

<?xml version="1.0" encoding="UTF-8"?>
<xmi:XMI xmi:version="2.0"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns="http://AstMM">
<RootType>
<kind>program</kind>
<children>
<kind>class</kind>
<name> Vegetable</name>
<isAnonymous>false</isAnonymous>
<extends/>
<implements/>
<body>

<kind>property</kind>
<name> edible</name>
<value/>
<isAbstract>false</isAbstract>
<isFinal>false</isFinal>
<visibility>private</visibility>
<isStatic>false</isStatic>

</body>
<body>

<kind>property</kind>
<name> color</name>
<value/>
<isAbstract>false</isAbstract>
<isFinal>false</isFinal>
<visibility>private</visibility>
<isStatic>false</isStatic>

</body>
<body>

<kind>method</kind>
<name>__construct</name>
<arguments>
<kind>parameter</kind>
<name> edible</name>
<value/>

platform:/plugin/org.eclipse.m2m.qvto.ast2astm/met
amodel/ASTM.ecore">
<AstmMM:OwnedElementsType1 name="Vegetable"

type="Class" />
<AstmMM:BodyDeclarationsType>
<modifier visibility="private"/>
<fragments name="edible"/>
<type>property</type>

</AstmMM:BodyDeclarationsType>
<AstmMM:BodyDeclarationsType>
<modifier visibility="private"/>
<fragments name="color"/>
<type>property</type>

</AstmMM:BodyDeclarationsType>
<AstmMM:BodyDeclarationsType>
<modifier visibility="public"/>
<fragments name="__construct"/>
<parameters name="edible"/>
<parameters name="color"/>
<type>method</type>

</AstmMM:BodyDeclarationsType>
<AstmMM:BodyDeclarationsType/>
<AstmMM:BodyDeclarationsType>
<modifier visibility="public"/>
<fragments name="isValid"/>
<parameters/>
<type>method</type>

</AstmMM:BodyDeclarationsType>
<AstmMM:BodyDeclarationsType/>
<AstmMM:ExpressionType/>
<AstmMM:ExpressionType operator="="/>
<AstmMM:ExpressionType operator="="/>
<AstmMM:ExpressionType/>
<AstmMM:ExpressionType/>
<AstmMM:ExpressionType/>

</xmi:XMI>
Fig. 15 Obtained ASTM Model

We can notice that obtained result corresponds to our aim

goal.

IV. RELATED WORKS

…

<type/>
<byref>false</byref>
<variadic>false</variadic>
<nullable>false</nullable>

</arguments>

Fig. 14 Source AST Tree Model

Due to new horizons opened by the MDA, More and more

research projects use the mechanisms offered by the MDA, in

among these projects include eg:
 Java Swing Modernization Approach : Complete

Abstract Representation based on Static and

Dynamic Analysis [13]

6ème Conférence Internationale en Automatique & Traitement de Signal (ATS-2021)

Proceedings Book Series –PBS- Vol 1, pp.27-34

Copyright © 2021

ISSN: 2961-6611

L Obtained ASTM Model

 A Model Driven Reverse Engineering Framework

for Extracting Business Rules out of a Java
Application [14]

 Reverse Engineering Applied to CMS-Based Web
Applications Coded in PHP: A Proposal of
Migration [15]

 MoDisco Project [16]

1) Java Swing Modernization Approach : Complete

Abstract Representation based on Static and Dynamic

Analysis (2016) : This paper defines an ADM-based method

to define abstract models representing the GUI knowledge

and automate the generation of these models through

transformation chains.

2) A Model Driven Reverse Engineering Framework for

Extracting Business Rules out of a Java Application (2012) :

This paper proposes a process of extracting business rules out

of a Java application, by identifying business rules from the

source code. And presenting the extracted business rules

through models.

3) Reverse Engineering Applied to CMS-Based Web

Applications Coded in PHP: A Proposal of Migration

(2013) : This paper defines an ADM-based method for
migrating CMS-based Web applications. This method is

focused on open-source CMS which are implemented in PHP.

It makes the implementation of the reverse engineering phase :

ASTM models are extracted from the PHP code by text-to-

model (T2M) transformation implemented by a source code

parser, KDM models are generated from the previous ASTM

models by means of M2M transformations. and by using

M2M transformations the CMS Model which conforms to the

CMS Common Metamodel is generated. M2M
transformations are implemented using ATL Transformation

Language.

4) MoDisco Project (2014) : The eclipse plugin
« Modisco » provides the capability of extracting
information from Java software artifacts, The model resulting

will conform to meta-model included in Modisco. Model of

the abstract syntax tree can be obtained first from the program

(based on a generic meta-model such as OMG ASTM), After

a transformation, Model of KDM meta-model is obtained;

KDM allows representing the entire software system and all

its entities at both structural and behavioral levels. Extracted

models by Modisco are Ecore models. Modisco is one of rare

tools that have allowed to apply the ADM principles in real.

Unfortunately, the current Modisco version does not include

any specific support for PHP code.
According to the related works we can conclude that ADM

approaches that extract Generic ASTM models from PHP

code and others platforms too are rare, some approaches stop

at the Specific ASTM level. As for example the "java"

models extract by Modisco from Java projects which are not

true ASTM models.

V. CONCLUSION & FUTURE WORK
This paper presented an ADM based approach that allow

obtaining ASTM model from PHP source code.
This approach is composed of two phases : 1) extracting

AST tree from source code, in this phase the trees are

extracted from the PHP code by text-to-model (T2M)

transformations implemented by a source code parser, 2)

Generation of ASTM models, KDM models are generated

from the previous ASTM models by means of M2M

transformations.
For the implementation of the tree extraction phase, we

have used Galyzzle PHP Parser which has allowed us to

extract AST tree from the source code.
For the implementation of the Generation of ASTM

models phase we have implemented transformation rules

using QVT-Operational language.
As a future work, we will perform the transformation of

extracted ASTM models above to KDM models, By

transforming models to KDM, the modeled program will

reach the top level of abstraction. Then, extending the KDM

meta-model to modeling the MVC structure and behavior of

the web application.

REFERENCES
[1] Architecture Driven Modernization (ADM) . [Online]. Available:

http://adm.omg.org/
[2] Object Management Object (OMG) . [Online]. Available:

http://www.omg.org/
[3] Model Driven Architecture (MDA) . [Online]. Available:

http://www.omg.org/mda/
[4] E. J. Chikofsky and J. H. Cross II, Reverse engineering and design

recovery: A taxonomy, IEEE Software 7 (1990), pp 13–17.
[5] S. Kent, Model driven engineering, in: Integrated Formal Methods,

volume 2335 of Lecture Notes in Computer Science, Springer, 2002,

pp. 286–298.
[6] C. Raibulet, F. Arcelli Fontana, and M. Zanoni : Model-Driven

Reverse Engineering Approaches : A Systematic Literature Review
[7] Meta-Object Facility specification of the OMG. [Online]. Available:

http://www.omg.org/spec/MOF/2.0/
[8] Abstract Syntax Tree Meta-Model specification of the OMG. [Online].

Available: http://www.omg.org/spec/ASTM/1.0/
[9] Knowledge Discovery Meta-Model specification of the OMG.

[Online]. Available: http://www.omg.org/spec/KDM/1.3/
[10] Structured Metrics Meta-Model, http://www.omg.org/spec/SMM/1.1/
[11] QVT (Query/View/Transformation) standard of the OMG. [Online].

Available: http://www.omg.org/spec/QVT/1.3/
[12] NodeJS PHP Parser - extract AST or tokens (PHP5 and PHP7) .

[Online]. Available: http://glayzzle.com/php-parser/
[13] Z. Gotti, S. Mbarki : Java Swing Modernization Approach : Complete

Abstract Representation based on Static and Dynamic Analysis
[14] V. Cosentino, J. Cabot, P. Albert, P. Bauquel and J. Perronnet : A

Model Driven Reverse Engineering Framework for Extracting
Business Rules out of a Java Application

[15] F. Trias, V. de Castro, M. López-Sanz, and E. Marcos : Reverse
Engineering Applied to CMS-Based Web Applications Coded in PHP:
A Proposal of Migration

[16] Modisco project. [Online]. Available: https://eclipse.org/MoDisco/

6ème Conférence Internationale en Automatique & Traitement de Signal (ATS-2021)

Proceedings Book Series –PBS- Vol 1, pp.27-34

Copyright © 2021

ISSN: 2961-6611

