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Abstract— 
HE main goal of this study is devoted to the problem of 

estimating VAR representations of multivariate (nonlinear) 
processes. In particular, we are interested to study the procedure 
of estimate and its asymptotic properties of VAR model under the 
assumption that the errors are uncorrelated but not necessarily 
independent. In this work, we introduce the main notions of linear 
and nonlinear process and briefly overviews results concerning 

the asymptotic behavior of the Quasi Maximum Likelihood 
Estimator (QMLE) in the weak AR framework. A particular 

attention is given to the estimation of the asymptotic variance 
matrix. Lagrange Multiplier, Wald and Likelihood Ratio tests 
are proposed for testing linear restrictions on the parameters of 
weak VAR model. 

Keywords—VAR models, Nonlinear processes, QMLE, Lagrange 
Multiplier test, Wald test, Likelihood Ratio test. 

 
I. INTRODUCTION T 

time series exhibit nonlinear dynamic, regime switching and 
asymmetries. However, it is impossible to account for these 
phenomena from the usual type autoregressive ARMA or 
VAR linear models, we must have recourse to non-linear 
processes able to reproduce these features. 

 
Among the great diversity of stochastic models for time 

series, it is customary to make a sharp distinction between 
linear and non-linear models. In fact, these two classes are 
not incompatible and can even be complementary. For a linear 
model to be quite general, the error terms must be the linear 
innovations, which are uncorrelated by construction but are 
not independent, nor martingale differences. In order to give 
a precise definition of a linear model and of a nonlinear 
process, first recall that by the Wold decomposition any purely 
non deterministic, second-order stationary process Xt can be 
represented by an infinite MA representation, 

∞ 
He VAR model is a just a multiple time series 

generalization of autoregressive model (AR) in 
multivariate case. It was proposed by Sims (1980). This 

Xt = ψlξt－l 
l=0 

, (1) 

is one of the most successful and flexible model to analyze 
multivariate time series. Because, the VAR model have many 
advantages. First, it can explain a variable over its lags and 
according to the information contained in other variables, 
this raises the cointegration problems. Second, it has a very 
large information space. This method is simple to include the 
estimation procedures and tests. Its simplicity is due to the 
fact that there is no distinction between endogenous variables 
and exogenous variables, all variables are considered as 
endogenous. Also, with a VAR model it is possible to test 
causality relationships. So this model allows us to explore 
the dynamic relationship between several variables. In a VAR 
model, all variables are treated symmetrically. 

 
In recent years, taking into account the nonlinearity tends to 

modify econometrics approaches applied to macroeconomic 
and finance. As we know that the most economic and financial 
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where,     ∞
l=0     ψl  

2 <      . This representation is weak because 
the noise is only the linear innovation of Xt (in the opposite 
case Xt would be a linear process). The process (ξt) is 
called the linear innovation process of the process X = (Xt), 
and the notation (ξt)     WN (0, Σ) signifies that X  = (Xt) 
is a weak white noise. A weak white noise is a stationary 
sequence of centered and uncorrelated random variables with 
common variance matrix Σ. By contrast, a strong white noise, 
denoted by ξt IID(0, Σ), is an independent and identically 
distributed sequence of random variables with mean 0 and 
variance Σ. A strong white noise is obviously a weak white 
noise, because independence entails uncorrelatedness, but the 
reverse is not true. Between weak and strong white noises, 
one can define a semi-strong white noise as a stationary 
martingale difference and is denoted by ξt      MD(0, Σ), if 
ξt is a stationary sequence  satisfying  E(ξt ξu, u  <  t)  =  0 
and V ar(ξt) = Σ. We will see that the distinction between 
strong and weak white noises is fundamental in nonlinear 
time series analysis. The importance of nonlinear models has 
been more widely growing in the time series literature. These 
models are interesting and useful but may be hard to use. It 
is therefore of great importance to develop methods allowing 
to work with a broad class nonlinear time series models. 
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This distinction has important consequences in terms of 
prediction. It is also crucial to take into account the differences 
between strong and weak VAR models. Thus, the class of the 
standard VAR models with independent errors is often judged 
too restrictive by practitioners, because they are inadequate for 
time series exhibiting a nonlinear behavior. On the contrary, 
the class of the so-called weak VAR models with uncorrelated 
but not necessarily independent errors is much more general 
and accommodates many nonlinear Data Generating Processes. 
The VAR model is called semistrong under the assumption a 
martingale-difference white noise. Obviously the strong VAR 
is more restrictive than that of semistrong VAR and the latter 
is more restrictive than the weak VAR. It is clear from these 
definitions that the following inclusions hold: 

{strongV AR} ⊂ {semi − strongV AR} ⊂ {weakV AR}. 

The class of the processes admitting weak VAR representations 
is dense in the set of the purely non deterministic stationary 
processes. Simple illustrations that the last inclusion of (2) 
is strict are given by the vast class of volatility models. 
Many examples of nonlinear processes admit weak AR 
representations, for exemple in the univariate case, the 
weak white noise (Romano and Thombs(1996)), causal 
representations of non causal strong AR models are weak 
AR (Francq, Roy and Zakoian (2005)). We conclude that the 
linear model (1), which consists of the MA models and their 
limits, is very general under the noise uncorrelatedness, but 
can be restrictive if stronger assumptions are maded. 

 
Several papers in the recent time-series literature consider 

the problem of estimating and the asymptotic properties 
of general nonlinear models. We briefly review the most 
significant contributions. Romano et Thombs (1996), 
introduced uncorrelated and dependent process that can be 
extended to the multivariate case, the estimation of weak 
processes gave rise to many works. Dufour and Pelletier 
(2005) studied the asymptotic properties of a generalization 
of the regression-based estimation method proposed by 
Hannan and Rissanen (1982) under weak assumptions on 
the innovation process. Francq et al. (2005), point out a 
strong convergence of least squares estimators (LS) of 
ARMA, mainly as an ergodicity assumption on the observed 

in the standard case. Lin and McLeod (2007) considered 
an ARMA models with infinite variance. Patilea and Raissi 
(2010) extend these results to the case of a VAR model with 
time-dependent variance. They analyzed the VAR models 
when the innovations are unconditionally heteroscedastic. 
Francq and Zakoian (1998) proposed a variance estimator of 
the LS estimator for the ARMA representations of nonlinear 
processes, for which the difference martingale hypothesis 
is not verified. Thus, they showed a little convergence 
under the same assumptions. The technique used is HAC 
(Heteroscedasticity and Autocorrelation Consistent) method. 
Similarly, Francq and Rassi (2007) proposed a variance 
estimator of a weak VAR estimator by the spectral density 
(SP) method. Recently, Boubacar Mainassara et al. (2012) 
studied the problem of the estimate of the asymptotic variance. 

 
The aim of the present work is devoted to the problem of 

estimating VAR representations of multivariate (nonlinear) pro- 
cesses. Thus, the principal interest is to study the procedure of 
estimate and its asymptotic properties. The traditional method 
consistently estimates the asymptotic covariance matrix of the 
parameter estimator and usually assumes the independence 
of the innovation process. For dependent innovations, the 
asymptotic covariance matrix of the estimator depends on the 
fourth-order cumulants of the unobserved innovation process, 
a consistent estimation of which is a difficult task. In the same 
way, we give a detailed attention to the problems of validation 
that is based on tests of linear restrictions on the parameters. 
Modified versions of the Lagrange Multiplier, Likelihood Ratio 
and Wald tests are proposed for testing linear restrictions on 
the parameters. The remainder of this work is organized as 
follows. Section 2 presents the notations and a preliminary 
asymptotics results. In the Section 3, we present the main 
results. Numerical illustrations are presented in Section 4. We 
finish by the conclusion. 

 
II. NOTATIONS AND PRELIMINARY ASYMPTOTIC RESULTS 

In econometrics and time series analysis, VAR models are 
much more widely employed to represent multivariate time 
series because they are easier to implement. Consider a d- 
dimensional stationary process (Xt) satisfying a vectorial AR 
model representation of the form: 

p 
process and asymptotic normality under the assumption of 
martingale difference noise. Thus, Boubacar and Francq (2009) 
extended these results to the case of a structural VARMA. 

Xt = AiX 
i=1 

t－i + ξt, t ∈ Z. (3) 

They studied the asymptotic properties of quasi maximum 
likelihood estimators (QMLE) parameters of a VARMA 
model without the independence assumption on the noise. 
Francq and Rassi(2007) also provided evidence of the strong 
convergence of the LS estimator for vector autoregressive 
models, replacing the usual assumption difference martingale 
noise by mixing a hypothesis on the observed process 
and they studied portmanteau tests for weak VAR models. 
Rassi(2008) considered a non-stationary case of a VAR model 
with a weak white noise, it showed that the estimators of long-
term relationships and the likelihood ratio test for the 
cointegrating rank have the same asymptotic behavior as 

It will be convenient to write (3) as φ(B)Xt = ξt, where B is 
the backshift operator and φ(z) = Id p Aiz

i is the AR 
polynomial. The unknown parameter θ0 = (A01, ..., A0p) is 
supposed to belong to the interior of a compact subspace Θ 
of the parameter space Θ :=   θ = (A1, ..., Ap)     Rp  .  Since 
θ  Θ, the polynomial φ(z) have all their zeros outside the 
unit disk. This assumption is standard and is also made for 
the usual strong AR models. The problem is obviously that 
the parameter θ0 has to be estimated. 

For the estimation of VAR models, the commonly used 
estimation method is the Quasi-Maximum Likelihood, which 
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estimator of the form 

k=0 ξ

t k=0 ξ 2+V 

n
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    V  

frequently for testing H0. We now examine if these principles 

 
can also be viewed as a nonlinear least squares estimation. 
The asymptotic properties of the QMLE of VAR models 
are well-known under the restrictive assumption that the 
errors  are  independent  (see  Lütkepohl(2005)).  Hannan  and 
Deistler (1988) and Dunsmuir and Hannan (1976) studied the 
asymptotic behavior of the QMLE in a much wider context 

III. MAIN RESULTS 

The asymptotic variance Ω := V －1UV －1 must however be 
estimated. The matrix V can easily be estimated by its 
empirical counterpart. So we need a consistent estimator of U. 
Note that 

who proved consistency, under weak assumptions on the 
noise process and based on a spectral analysis. Thus, they 
have also obtained asymptotic normality under a conditionally 

n 

U = V aras √n
 
t=1 

Υt = 
+∞ 

 

h=－∞ 
Cov(Υt, Υt－h), (6) 

homoscedastic martingale difference assumption on the linear 
 Υ   =   

∂  {log det Σ + ξ
' 
(θ(1))Σ－1ξ (θ(1))} (7) 

nonlinear models. 
 

The Gaussian quasi-likelihood is given by, 

In the econometric literature the nonparametric kernel esti- 
mator, also called heteroscedastic autocorrelation consistent 
(HAC) estimator, is widely used to estimate covariance matri- 

L (θ) = 
Y 

√ 
1 

exp{− 
1 

ξ
' 
(θ)Σ－1ξ (θ)}. (4) 

 

ces of the form U. Let Υ̂t 
ˆ 

be the vector obtained by replacing 

A quasi-maximum likelihood estimator is a measurable solu- 
tion θ̂n   of 

 

 

Ω̂HAC  = V̂ －1U HAC V̂ －1, U HAC  =  
1 
n 

Σ 
ω|t－s| Υ̂tΥ̂s, 

 
 θ̂n  = arg max Ln(θ) = arg min ln(θ), ln(θ) = − log Ln, t,s=1 (8) 

θ∈Θ θ∈Θ n 
(5) where ω0, ..., ωn－1 is a sequence of weights. 

For the strong consistency and the asymptotic normality of the 
QMLE, it is necessary to assume the following assumptions: 
H1 : ξt WN (0, Σ). 
H2 : The process (ξt) is stationary and ergodic. 
H3 :  We have θ0 ∈ Θ̇   where Θ̇   denotes the interior of Θ. 

It may be of interest to test s0 linear constraints on the 
model. We thus consider a null hypothesis of the form 

H0 : R0θ0 = r0, (9) 
where R  is a known s  × k   matrix of rank s   and r 

H4  : For some V  > 0, we have Eǁξtǁ4+2V    < +∞ and 0 0 0 0 0
 

Σ∞   {α (k)} 2+V   < ∞. 

is a known s0-dimensional vector. The Likelihood Ratio, 
 

Mθ0 = [A01 : ... : A0p : Σ0]. H6 : For some V  > 0, we have 

Eǁξ ǁ4+2V  < +∞ and 
Σ∞  {α (k)} < ∞. 

remain valid in the non standard framework of weak VAR 
models. 

The asymptotic distribution of the QMLE is given in the The Likelihood Ratio statistic satisfies, 
following proposition. LR   := 2{log L (θ̂   )−log L (θ̂c )} op=(1)  

n 
(θ̂   −θ̂c )

' 
V (θ̂   −θ̂c ). 

Proposition.1. Let (Xt) be a strictly stationary process defined n 

by(3) satisfying A1A5.  Then, θ̂n   is QMLE and almost surely 
ˆ 

n    n n    n 2 n n n n 

(10) 

θn → θ0 a.s.  as   n → ∞. 
Proposition.2. Under the assumptions A1-A5, we have 

The LRn statistic asymptotically distribution as s0    λiZ
2 

where the Zi
′s are iid N (0, 1) and λ1, ..., λs0  are the eigenval- 

√ ˆ － 
 

 

ues of the matrice, 

n(θn − θ0) ⇒ N (0, Ω := V 1UV －1)    when    n → ∞, ΣLR = V －1/2 SLRV －1/2 , where (11) 

2 2 S 1 = (R V R ) (R ΩR )(R V R ) R .  (12) 
 

 

V (θ0) = lim 
2 

' ln(θ) = lim '  log Ln(θ) LR 2 0 0 0 0 0 0 0 

 
and 

n→∞ ∂θ∂θ 
 

∂ 
 

 

n→∞ n ∂θ∂θ 
 

2   ∂ 
 

 

 
Now, we consider the LM test. Let 

QMLE of the parameter under H . 

 
ˆc be the restricted 

U (θ0) = lim 
n→∞ 

V ar 
∂θ 

ln(θ) =  lim 
n→∞ V ar √ n ∂θ log Ln(θ). 0 Define the Lagrangean, 

 

In the standard strong VAR case we have U = V, so that 
Ω = V －1. In the general case we have U /= V. The problem 

l(θ, λ) = ln(θ) − λ
' 
(Rθ − r), (13) 

where λ denotes a s0-dimensional vector of LM. The first- 
order conditions yield, 

also holds in the univariate case (see Francq and Zakoan, 2007, 
and the references therein). 

∂  
l  (θ̂c ) = R

' 
λ̂, Rθ̂c   = r  . (14) 

∂θ n    n n n 

2 

t=1 

innovations. However, this assumption precludes most of the 

θ 

θ=θ0 . 

˙ ' Lagrange Multiplier and Wald test principles are employed H5 : La matrice Mθ0  = ∂vec(Mθ)/∂θ is of full rank, with 

∂ ∂
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s0

→ ∞ 

s0

— － 

0 0 0

n 0 0 0 0 0 0

η2tη2t－1η2t－2 
, η2t 

 

Thus under H0 and the previous assumptions, nominal level α = 5%, the empirical size over the N = 1000 independent replications should vary between the significant 1  ˆ －1  ' －1 ' －1 
 

 

' －1 

√
n

λ → N {0, (R0V R0) R0ΩR0(R0V R0) }, (15) limits 3.65% and 6.35% with probability 95%. When the 
relative rejection frequencies are outside the significant limits, 

so that modified versions of the Lagrange Multiplier statistic 
is defined by, 

LMn =     nλ̂
' 
{(R0V̂ －1R

' 
)－1R0Ω̂R

' 
(R0V̂ －1R

' 
)－1}－1λ

'
 

they are displayed in bold type in Table(I). 

 
TABLE I. EMPIRICAL  SIZE  OF  STANDARD  AND  MODIFIED  TESTS: 

 
=     n  

∂  
l  (θc )V̂ －1R

' 
(R  Ω̂R

' 
)－1R  V̂ －1   ∂  

l  (θc ). 
  

REPLICATIONS IS N = 1000. 
∂θ n  n 0 0 0 0 ∂θ n    n 

More precisely, at the asymptotic level α, the null hypothesis 
is therefore rejected when LMn > χ2 (1 − α). 

According to the asymptotic normality of θ0, we deduce 
that, 
√ 

( ˆ 
 

) (0 Ω  
' 

:= (   －1 －1) 
' 
)  (16) 

n R0θn − r0   → N , R0 R0 R0  V UV R0  ,  
I: Strong VAR(1) model, II : Weak VAR(1) model 

 

when n . Under the assumptions A1-A5, the modified 
Wald statistic presented as follow: 

 
 

TABLE II. EMPIRICAL  POWER  OF  STANDARD  AND  MODIFIED  TESTS  : 

W    = n(R  θ̂ — r  )
' 
(R  Ω̂R

' 
)－1(R  θ̂  — r ). (17) 

RELATIVE  FREQUENCIES  (IN  %) OF  REJECTION  OF  H0.  THE  NUMBER  OF 
 

 

Under H , these statistics follow a distribution of χ2 . There- 0 s0 

fore, the standard formulation of the Wald test remains valid. 
At the asymptotic level α, the Wald test consists in rejecting 
the null hypothesis when Wn > χ2 (1 − α). 

IV. NUMERICAL   ILLUSTRATIONS 

We illustrate the estimation procedure by applying it to 
some simulated sets. The first simulated example is used to 

 
 
 
 

III: Strong VAR(2), IV: Weak VARMA(2) 
 

 
For the strong VAR model I, all 

frequencies are inside the significant 

 
 
 
 

the relative rejection 
limits. For the weak 

demonstrate that the proposed procedure and the standard one 
give very close results when the underlying process is strongly 
linear. In the second example (a weak VAR representation of 
a non-linear process) our procedure outperforms the standard 
one. 

 
We first study numerically the behaviour of the QMLE for 

strong and weak VAR(1) models of the form 

Xt = AXt－1 + ξt, A = 0.95I2 (18) 

and VAR(2): 

Xt = A1Xt 1+A2Xt 2+ξt,  A1 = 0.95I2   et   A1 = 0.1I2 
(19) 

VAR model II, the relative rejection frequencies of the 
standard tests are definitely outside the significant limits. 
Thus the error of first kind is well controlled by all the tests 
in the strong case, but only by modified versions of the tests 
in the weak case. 

 
From Table (II) we can remark that the powers of all the 

tests (standard and modified tests) are very similar in the 
model III case. We can also remark that the same is true for 
the three modified tests (Wald, LM and LR) in the model IV 
case. Whereas, the empirical powers of the standard tests are 
hardly interpretable for the model IV. Because we have already 
seen in Table (I) that the standard versions of the tests do not 
well control the error of first kind in the weak VAR framework. 

where 
ξ1t 
ξ2t 

  
→ N (0, I2) (20) 

 
 

V. CONCLUSION 

in the strong case, and 
   

η1tη1t－1η1t－2 η1t 

In this study, we develop a review of some recent results 
for VAR models with uncorrelated but non independent errors. 

 
in the weak case. 

 
Table (I) displays the empirical sizes of the two versions 

(standard and modified) of the Wald, LM and LR tests. For the 

results. For the estimation of VAR models, the commonly 
used estimation method is the QMLE. It is known that, under 
the restrictive assumption that the errors are uncorrelated 
and independent, the QMLE are strongly consistent and 

Replacing the usual implicit strong assumptions on the noise 
process by ergodicity and mixing modifies the asymptotic 

REPLICATIONS IS N = 1000. 

RELATIVE FREQUENCIES  (IN  %) OF  REJECTION  OF  H0. THE  NUMBER  OF 

 

n n

ξt = iid    N (0, I2),   (21) 

Model Length n Standard Test Modified Test 
 Wald LM LR Wald LM LR 
 n=100 5.2 4.5 5.0 6.4 5.7 6.1 

I n=500 5.6 5.4 5.5 6.0 5.8 5.9 

 n=2000 5.8 5.8 5.8 5.8 5.7 5.7 

 n=100 8.2 6.8 8.1 4.9 3.9 4.8 
II n=500 7.9 7.7 7.8 4.9 4.9 5.0 

 n=2000 6.5 6.5 6.5 4.7 4.6 4.6 

Model Length n Standard Test Modified Test 
 Wald LM LR Wald LM LR 
 

III 
 

n=500 
 

13.5 
 

13.1 
 

13.2 
 

14.0 
 

13.6 
 

13.9 

IV n=500 8.4 9.11 11.3 22.1 24.0 27.2 



Vol.3 pp. 25-30 Journal of Operational Management & Marketing Strategies (OMMS) 
 

© Copyright 2024 
ISSN: 2961-662X 

 

 

asymptotically normal. We showed that these results can 
be used to estimate weak linear representations of some 
nonlinear processes. 

 
In the same way, we give a detailed attention to the 

problems of validation that is based on tests of linear 
restrictions on the parameters. Modified versions of the 
Lagrange Multiplier, Likelihood Ratio and Wald tests are 
proposed for testing linear restrictions on the parameters. 

 
From the asymptotic theory, we draw the conclusion that the 

standard approach, based on the quasi-maximum likelihood 
estimator, allows to fit vector autoregressive models of a 
wide class of nonlinear multivariate time series. In particular, 
this standard approach, including the significance tests on the 
parameters, needs however to be adapted to take into account 
the possible lack of the independence assumption. 
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