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Abstract— In this paper, we deal with the optimal 

reconfiguration of a transfer line. Such a line is composed of 

serial stations. Operations of the same station are partitioned into 

blocks activated sequentially. The operations of each block are 

executed simultaneously by the same spindle-heads. The problem 

is to group the operations into blocks and to assign them to 

machines in order to minimize the line cycle time in such a way 

all operations are assigned and constraints are satisfied. A 

heuristic approach is proposed to solve the problem. For the 

solution enhancement, improvement procedures are suggested. A 

lower bound on the line cycle time is defined to measure the 

efficiency of the proposed algorithm. Test instances are 

performed and experimental results are presented. 

 
Keywords— Reconfigurable transfer line, Assignment and 
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I. INTRODUCTION 

A Transfer Line Balancing Problem (TLBP) is studied 
here. It consists on the optimization of serial machining lines. 
These lines are reconfigured in industry for mass production 
[1], [2], where high production rate is required. In such lines, 
parts to be produced are simultaneously transferred from a 
station to the next at the end of a line cycle, as shown in Fig. 1. 
The line cycle time is the maximum of station times. Each 
station is equipped with spindle head having several tools to 
execute several operations at the same time. Multi-spindle 
heads are also called blocks. The objective is to assign all 
operations to blocks then to allocate the obtained blocks to 
stations, minimizing the cycle time. This is similar to line 
balancing problem. 

 

 

Fig. 1. A scheme of a machining line 

II. STATE OF  THE ART 

The balancing problem arises for all types of production 
lines. Originally, it was formulated for mono-product assembly 
lines, in the automotive industry. The objective of the problem 
is to assign operations to workstations, while the precedence 
constraints are satisfied and each operator has the time to 

 

realize all operations that are assigned to him during the cycle 
time [3]. In the literature, this problem is known as the Simple 
Assembly Line Balancing Problem (SALBP). 

In 1986, several models have been listed in [4]: 
SALBP: only the most common constraints are considered: the 
cycle time and precedence constraints. Depending on the 
objectives, several versions of SALBP are considered, we cite 
only: SALBP-1(minimizing the number of stations with a given 
cycle time) and SALBP-2 (minimizing the cycle time with a 
given number of stations). 

The SALBP problem doesn’t reflect the industrial reality, 
because of the considered simplifying assumptions. Therefore, 
more general assumptions have been introduced; in this case 
we speak of Generalized Assembly Line Balancing Problem 
(GALBP). 

GALBP: This model considers both current constraints and 
other less common as: grouping operations (must be assigned 
to the same station), incompatibility (operations must be 
assigned to different stations), parallel stations (operations 
performed simultaneously)... 

Our problem called Transfer Line Balancing Problem 
(TLBP) can be considered as mentioned in [5] by Dolgui and 
Guischinskaya, as a version of GALBP. To our knowledge, 
studies dealing with this problem aren’t numerous. A series of 
studies was carried out by Dolgui and his team. Several 
families of problems have been addressed in [4], assuming that: 
the activation mode of blocks is sequential, parallel or mixed, 
the set of possible blocks is available in advance or not. 

For solving these problems, exact methods have been 
proposed. They are based on: 
- Graph theory: in [7], the original problem has been 
transformed into a shortest path problem, after the construction 
of   a   special   graph   to   the   problem. 
- The mixed integer linear programming: the TLBP problem 
was presented in [8] as a mixed performance integer linear 
program. In [10], the authors have improved the of their 
approach, reducing the number of variables by a more detailed 
analysis of the original problem constraints and the calculation 
of  a  lower  bound  for  the  station  number. 
- Branch and Bound: This method has been proposed in [9]. 
In this paper, a lower bound for the objective function has been 
developed; it is based on a relaxation of the problem studied, in 
order to transform it to a "Partitioning Problem Set" and to 
calculate  a  lower  bound  for  the  station  number. 
As Transfer Line Balancing Problems are NP-hard [9], 
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heuristic methods have been used for solving large instances. 
Some   heuristics   have  been   proposed   in  [7]: 
- RAB algorithm (Random Assignment of Blocks): this 
heuristic based on COMSOAL (Computer Method of 
Sequencing Operations for Assembly Lines) technique, can 
build stations progressively, by a random assignment of 
possible   blocks   to   the   current   station. 
- DFS algorithm (Depth-First Search): heuristic based on the 
technique of depth-first search to find the shortest path in a 
special graph. The algorithm stops when the first solution is 
found. 
- Mixed optimization approach: presented in [5], it is based on 
the decomposition of a heuristic solution on sub-problems 
which are resolved by an exact method to improve the quality 
of the initial solution. 
In the majority of studies found in the literature, considering 
the TLBP problem, the optimization criterion is to the line cost 
by reducing the number of stations and blocks. While in this 
work, we aim to minimize the cycle time of the line. 

 
III. PROBLEM DESCRIPTIONS 

The problem studied in this paper consists on the 
assignment of all the operations necessary to produce the final 
product. This problem is introduced by analogy to SALBP-2, 

ti:  the execution time of operation i, i N. 

Es (Eb): subsets of operations so that all operations of each 
subset must be assigned to the same station (block) 

Es (Eb): subsets of operations so that all operations of each 
subset can’t be assigned to the same station (block) 

Problem constraints can be represented as follows: 

Gr(N,Dr): a directed graph representing the precedence 
constraints  between operations. 
Gs=(N,Es) (respectively Gb=(N,Eb)): a graph representing the 
inclusion constraints for operations in the same station 

(respectively block). For X  N , XEs (respectively Eb) if 

and only if the operations of X must be assigned to the same 
station (respectively  block). 

G s = (N , E 
s 
) (Respectively G b = ( N , E 

b 
) ): a graph 

modeling exclusion constraints for operations in the same 

station   (respectively   block).   For X  N ,   X 

 E s (respectively E b ) if and only if the operations of X can’t 

be assigned to the same station (respectively block). 

 

C. Objective 
To solve the optimization problem we have to determine 

where the criterion is to minimize the cycle time. 
the reconfiguration parameters: Nk = N k1,..., N 

 

knk 
 the set of 

A. Constraints 
Different constraints are considered in this problem: 

blocks in station k (k=1…m0), where Nkl is the set of operations 
grouped into the same block l (l = 1…nk) of station k, 
P = N1,...,Nm  = N11,...N1n ,...,Nk1,...,Nkn ,...,Nm ,...,Nm n :a 

1) Precedence constraints: the execution order of the 0 1 k 1 0 m0 

operations may be partially specified due to the 

technological constraints, they can be illustrated by a 

graph that contains nodes corresponding to the operations 

and arcs connecting the nodes. The arc (i, j) exists if the 

operation i can be performed before or simultaneously 

with the operation j. 

2) Exclusion constraints: express the impossibility of 

combining some operations in the same block or in the 

same station. 

3) Inclusion constraints: express the fact that two operations 

must be executed in the same block or in the same station. 

In addition, limitations are imposed on stations and 

blocks. In fact, the capacity of stations in terms of 

machining units (n0) must be taken into consideration. 

Indeed, the maximum emplacement to equip the stations 

is limited. In addition, a machining unit has a limited 

number of tools (i0) that perform several operations at the 

same time. 

B. Parameters and Notations 

reconfiguration decision presenting an assignment of 
operations to a series of machines (k=1…m0) and repartition of 
operations to nk blocks of the same station k, and minimizing 
the cycle time of the line. Fig. 2 illustrates the line structure. 

 
 

Fig. 2. A Machining Line structure 

 

The cycle time of the line Tc is calculated as follows: The 
activation mode of blocks that governs how to engage the 
machining units of the same station is sequential, so the 
working time of a station is equal to the total execution time of 
its units: 

The parameters used are: 

N: the set of all operations, 

n k 

T k  = 
l = 1 

T ( N kl ),  k = 1,..., m 0 () 

m0: the fixed number of stations in the line, 

n0: the maximum number of blocks per station, 

i0: the maximum number of operations per block, 

The block running time T(Nkl ) from the station k depends 
on the operations set Nkl. Operations in the same block are 
executed in parallel, so the execution time of a block is the 
maximum time of its operations. 

 
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k 

j 

g 

T ( N kl ) = Max t / j  N kl  () assignment must satisfy the following constraints: Inclusion 
block, precedence, exclusion block and the capacity of the 

As the line cycle time Tc is the time to process a product by 
any station (time of the bottleneck station), we have: 

block i0. 

 

C. Improvement procedures 

7) Improvement by exchange between blocks 

Tc = Max 
k = 1 ... m 0 

n 

(  
l = 1 

Max t / j  N kl ) () In order to improve the heuristic solution i.e. to assure 
further reduction of the obtained line cycle time Tc_heur which 
depends on the bottleneck station Sg, we proceed to move some 

Since the TLBP is a generalization of the simple assembly 
line problem known to be NP-hard, the considered problem is 
also a complex problem and can’t be resolved by exact 
methods. 

 
IV. RESOLUTION APPROACH 

In this section, we describe the overall approach we 
developed to solve our problem. This approach proceeds in 
four steps: 

 

A. The Precedence graph transformation algorithm 

In [8], a precedence graph transformation algorithm has 
been proposed to reduce the problem size. Indeed, the inclusion 
constraints to the same block can be treated in advance. Using 
Gr and Eb, the N set can be divided into subsets called macro- 
operations grouping the operations that must be performed in 
the same block. This transformation reduces the problem size 
and eliminates the Eb constraints. For more details refer to [8]. 

Our work takes place after this step and it is performed with 
the macro-operations, obtained after this transformation. In the 
following, we use the term operation to refer to macro- 
operation. 

 

B. Heuristic method 

As the problem is NP-hard, we propose a heuristic to 
achieve a compromise between computation time and quality 
of the obtained solution. The developed heuristic method 
provides an initial solution called Tc_heur, i.e. all operations are 
assigned to stations and blocks respecting all the problem 
constraints. 

The steps of this heuristic are: 

4) Assigning rank to the vertices of Gr 

Thereby we determine the assignment order of operations 
without violating the precedence constraints. If Lr denotes the 
operations list of the same rank r, we proceed to the assignment 

of an operation from Lr if all operations of the set Lx ( 1  x  r) 
are affected, and therefore all its predecessors are already 
affected. Thus, operations are assigned to the adequate station 
and the appropriate block, in ascending order of their rank. 

5) Allocation to the station Sk (1  k  m0) 

The assignment of the current operation i to the station Sk 
must satisfies the following constraints: Inclusion station, 
precedence, and exclusion station. 

6) Allocation to the block bkl (1  l  n0) 

Once the current operation i is affected to the station Sk, we 
define the block bkl of Sk where i will be performed. This 

operations of this station from one block to another in the same 
station. 

We move from the block bgl to an adjacent block, the 
operation imax gl which imposes the cycle time of this block, if 
all the constraints are respected. 

We opted for an exchange between adjacent blocks to 
reduce the risk of violating the precedence constraints. The 
idea of this procedure is to start with the movements that help 
to bring the best improvement, i.e to reduce the cycle time of 
the bottleneck station Tcg. After each movement, the cycle time 
is calculated and the new bottleneck station is identified to 
apply the same procedure again. If no exchange produced a 
decrease in cycle time, the procedure stops. 

 
8) Improvement by exchange between stations 

Reducing the cycle time of the bottleneck station can also 
be obtained by moving some operations from this station to the 
adjacent stations. So that the precedence relations are not 
violated, we move from the last block of Sg the operation 

having the greatest operating time imax gn to the first block of 

Sg+1 and move imax gl from the block bg1 to the last block of Sg-1. 
The direction of travel is shown schematically in Fig 4. 

 

 
Fig. 3. Direction of operations travel between blocks and stations 

 

When one of the problem constraints is not satisfied 
moving to the new station becomes impossible. It should be 
noted that any movement must ensure the reduction of the line 
cycle time. These movements can cause the appearance of a 
new bottleneck from the two affected stations Sg-1 and Sg+1. 

We must therefore ensure that, after these changes, the new 
cycle time (which corresponds to execution time of the new 
bottleneck station) is less than the old value of Tc, if not these 
changes are discarded. To estimate the quality of the heuristic 
solution and the improved solution or to give proof of their 
optimality in some special cases, we have developed a lower 
bound for Tc. 

 
V. LOWER BOUND 

An obvious lower bound for the cycle time of the line Tc is 
given: 

j 
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i 
BI1 = Max(t ) 

i=1...N 
() Microsoft Visual Studio C++ version 6.0 under Windows XP 

and the programming language C++, on a PC Intel ® Pentium 
® with 1.73 GHz frequency and 512 MB of RAM. 

This bound corresponds to the case where there is a single 
block per station and is generally so far from the optimal value 
of the criterion considered. 

We propose another lower bound BI2, better than BI1, 
because it takes into account some constraints (exclusion 
blocks, limitation of the blocks number per station n0 and 
limitation of the operations number per block i0). 

The calculation of this bound is obtained by relaxing the 
precedence constraints, so we form blocks with operations in 
the order of decreasing durations and place in each block the 
maximum number of operations. 

Thus, operations of large execution time occupy the same 
block, and will be performed simultaneously; hence the cycle 
time will be reduced. In order to achieve our goal, we have also 
interest to occupy all stations. To minimize the cycle time, the 
distribution of blocks on the stations must seek to balance the 
load of different stations. 

The steps of BI2 calculation are: 

16 series of tests were randomly generated for a number of 
operations N varying from 5 to 30 and a graph density D(Gr) 
ranging from 0.11 to 0.7 . 
Each series includes 10 instances of the same N and D(Gr) but 
differ by the operations time. 

For each of the 160 instances, we apply the heuristic 
algorithm to find an initial solution called Sheur with a line cycle 
time Tc_heur. To improve Sheur i.e to reduce Tc_heur the two 
improvement procedures were used. The final solution is 
Sexchange_s and the cycle time is noted Tc_impr. 

 

A. Performance indicators 

Four performance indicators are used to measure the quality 
of the resolution method: 

• Time_execution (s): is the computational time related 

to the heuristic method and improvement algorithm. 

• Improvement (%): is the improvement percentage of 

Sheur, calculated as follows: 

A. Construction of blocks 

Take the N operations in descending order of their 
operating time, and form blocks with the maximum number of 
operations i0. 

 
improvement(%) = 

(Tc _ heur − Tc _ impr ) 
 

 

Tc _ heur 

 
100 

 

() 

N 
We obtain n blocks b1, b2,..., bn , ( n =  

i0 

integer part of a) with durations such that: 

 
+1. a is the 

• Gap1 (%): is the difference between the value of the 

heuristic solution Tc-heur and the optimal solution BI. 

 

Gap1(%) = 
Tc _ heur − BI 

100 

T(b1)>T(b2)> ...>T(bn) and the execution time of a block bk: 

T (bk ) = Max(ti ), k = 1...n . 
ibk 

During the construction of these blocks, if the current 
operation i to assign to the block under construction don’t 
respect the exclusion block constraints, it’s left to a later stage 

() 

BI 

• Gap2 (%): is the deviation of the improved solution 

Tc-imp from the value of the optimal solution BI. 

and we move to the next operation and verify the same thing. 

 

B. Distribution of blocks to stations 

First, we assign the m0 first blocks bk at each station. The 
execution time of each station Sk, at this stage, is T(Sk) = T(bk). 

Gap2(%) = 
Tc _ impr − BI 

100 
BI 

 
B. Performance of improvement procedures 

() 

If there are blocks not yet allocated, the current block is placed 
in the station with the lowest execution time. Repeat until all 
blocks are assigned. 

At each block’s assignment to a station, we have to update 
the station execution time. At the end, we should have balanced 
stations in terms of execution time thus the cycle time is 
minimized. 

 
VI. EXPERIMENTAL RESULTS 

To evaluate the performance of the proposed method and to 
identify the impact of some parameters (density D(Gr) of the 
precedence graph Gr and the problem size i.e the number of 
operations N), an experimental study is developed. We used the 

For the 160 instances, we report the experimental results 
with a cloud of points in Figure 5 showing the improvement 
percentage. Note that for almost all instances, the improvement 
varies between 0.72% and 10.67% and rises to 22.95% for N = 
10. We can say that the improvements are significant. 

In fact, for lines of mass production, the line performance is 
measured by its cycle time, then, even a small reduction of Tc, 
implies a considerable productivity gains and benefit from 
economies of scale. However, this reduction of Tc_heur is not 
guaranteed for any instance. We note that for some instances, 
the application of improvement procedures has no effect. It 
would be interesting to know if the heuristic solution we have 
is optimal. 
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Fig. 4. Improvement percentage for different N 

 

9) Deviation of the obtained solutions relative to BI: 

The graphs in Fig. 5 and 6 visualize the percentage of 
solutions whose gap is equal to 0% (i.e the solution is optimal) 
and that the value of the gap is in the following intervals: from 

 0%, 10%  to  90%, 96%] with a pitch of 10%. 

Fig. 5 shows the difference between the heuristic solution 
and the lower bound for the set of generated tests. It was found 
that only 2.01% (respectively 4.03% and 4.70%) cases have a 

Gap1 which belongs to the interval  90%, 96%] ( respectively 

80%, 90%] and 70  %, 80%]), so for a small proportion, the 
heuristic solution is far from the lower bound. 

In the other side, for 21.48% of the heuristic algorithm tests 
provide an optimal solution. It is obvious that for these 21.48% 
of instances, which we have given a proof of optimality, 
Improvement (%) will be zero; since Tc_heur reached the lower 
bound so the heuristic solution can’t be improved furthermore. 
Looking at Fig. 6, we notice that 23.49% of the improved 
solutions are optimal. It is noted that for 8.57% of the optimal 
case, optimality is reached after applying improvement 
procedures, while the rest has already been obtained directly by 
the proposed heuristic. 

Comparing the two Fig. 5 and 6, it is clear that the value of 
Gap2 is lower than that of Gap1. This leads us to conclude that 
the application of the improvement procedures fulfill the 
function for which they were proposed i.e. to reduce the gap 
between the obtained solution and the lower bound. 

 
 

 
Fig. 5. Gap between Sheur and BI 

Fig. 6. Gap between Simpr and BI 

 

C.  Variation of results according to N 

The performance of the proposed resolution approach is 
measured by the improvement percentage of the heuristic 
solution Improvement (%) and the total execution time. To 
evaluate the behavior of these criteria for different number of 
operations N and for the same density D(Gr), we summarize the 
results of the tests in Tables 1, 2 and 3. 

 
TABLE I. RESULTS ACCORDING TO N (LOW DENSITIES) 

 

N 
Improvement (%) Time_execution (s) 

Min Max Min Max Moy 

5 0,00% 0,00% 13 25 21,2 

10 ⎯ 22,95% 37 55 45,1 

15 ⎯ 8,83% 23 77 46,9 

17 ⎯ 10,14% 49 67 58,9 

20 ⎯ 11,11% 46 72 60,5 

23 ⎯ 5,29% 44 109 67,7 

25 ⎯ 6,82% 59 112 76,9 

30 ⎯ 10,67% 65 283 123,7 

 
TABLE II. RESULTS ACCORDING TO N (AVERAGE DENSITY) 

 

N 
Improvement (%) Time_execution (s) 

Min Max Min Max Moy 

5 0,00% 0,00% 12 26 17,4 

10 ⎯ 22,95% 23 49 33,1 

15 ⎯ 0,00% 25 54 38,4 

20 ⎯ 3,08% 31 74 46,9 

 
TABLE III. RESULTS ACCORDING TO N (HIGH DENSITY) 

 

N 
Improvement (%) Time_execution (s) 

Min Max Min Max Moy 

5 0,00% 0,00% 12 26 17,4 

10 ⎯ 22,95% 23 49 33,1 

15 ⎯ 0,00% 25 54 38,4 

20 ⎯ 3,08% 31 74 46,9 

 

In Table 1, the problem size N varies (N = 5, 10, 17, 20, 23, 

25, 30) for a family of low densities (0.11  D(Gr)  0.2). 
Tables 2 and 3 show respectively the variation of Improvement 
(%) and Time_execution (s) according to N, for an average 
density (D(Gr) = 0.5) and high density (D(Gr) = 0.7). 

10) Evolution of Improvement (%) according to N 

Note that the improvement percentage of Sheur doesn’t 
depend on the number of operations to affect but rather 
depends on various problem constraints (precedence, exclusion 
for stations and blocks, inclusion for stations, m0, n0 and i0), 

GAP2 (%) 

3,36% 4,03% 2,01% 

9,40% 
23,49% 

14,09% 
8,72% 

2,68% 

2,68% 
12,08% 17,45% 

0% 

] 0%,10% ] 

] 10%,20% ] 

] 20%,30% ] 

] 30%,40% ] 

] 40% ,50% ] 

] 50%,60% ] 

] 60%,70% ] 

] 70% ,80% ] 

] 80% ,90% ] 

] 90% ,96% ] 
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since operations exchange between the blocks of the bottleneck 
station or operation exchange between the station and its 
adjacent stations, is possible only when all constraints are 
satisfied. 

- Evolution of Time_Execution(s) according to N: from the 
three tables, we can study the Time_execution evolution shown 
in Fig. 8. It is obvious that whenever the operation number 
increases, the average computation time increases also, because 
we spend more time to allocate these operations on different 
stations and blocks. But it still remains low for all the 160 
instances, it ranges from 15s (for N = 5 and D (Gr) = 0.7) to 
123s (for N = 30 and D (Gr) = 0.11). 

 

D. Variation of results according to D(Gr) 

- Improvement evolution according to D(Gr): we report the 
evolution of the average improvement in Fig. 7. These results 
show that whenever D(Gr) increases the improvement 
decreases. For high densities, the average improvement of the 
heuristic solution by managing the bottleneck station becomes 
low or zero. This behavior can be explained by the fact that a 
high density reflects that precedence relations aren’t flexible to 
perform exchange of operations between the blocks of the 
bottleneck station or the exchange with the adjacent station. 

 

 
Fig. 7. Evolution of the Mean Improvement according to N and D(Gr) 

 

- Time_execution evolution according to D(Gr): returning 
to Fig. 8, we can see the details of the time resolution behavior 
for series of tests with N = 5, 10, 15, 20. For the same N, we 
must observe the three abscissas labeled (D(Gr) = 0.2, D(Gr) = 
0.5 and D(Gr) = 0.7), which allows us to study the influence of 
the D(Gr). We see a direct link between D(Gr) and the 
computation time. Indeed, observing each series separately, we 
find a significant reduction of the execution time for a high 
density (D(Gr) = 0.7). Thus, it can be concluded for each 
series, the family of tests at low density (D(Gr) = 0.2) is always 
more difficult to solve than tests with an average density 
(D(Gr) = 0.5). Similarly, the series with an average density are 
more expensive in computation time than series with the 
highest density. The difficulty of low-density instances can be 
explained by the large number of possible operations 
assignments to stations and blocks. So, when the density is 
higher, the precedence constraints become numerous and the 
problem becomes less flexible and the solution is obtained 
rapidly. However, the two parameters N and D are not the only 
factors that influence the computation time, especially as the 
difficulty in some instances, may be due to the numerical 
values of the input data which are generated randomly. 

 

 
 

Fig. 8. Evolution of the Mean Execution Time according to N and D(Gr) 

 

VII. CONCLUSION 

According to the experimental results, we obtain in 23.49% 
of cases, an optimal solution. In addition, in 32.21% of cases, 
the deviation from the lower bound does not exceed 10%. 
Moreover, the proposed approach is able to produce a solution 
in a very low computation time. By managing the bottlenecks 
stations, reducing cycle time of the machining line is up to 
22.95%. In general, the rate of good solutions obtained is 
interesting then we can say that our resolution approach is quite 
effective. The use of metaheuristics can improve more the 
quality of the obtained solution, and is in our opinion a logical 
sequence to this work. 
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