
Vol.2 pp. 7-13 Journal of Operational Management & Marketing Strategies (OMMS)

© Copyright 2023

ISSN: 2961-662X

Minimization of a Transfer Line Cycle Time
Sana Bouajaja, Najoua Dridi

OASIS Laboratory, National Engineering School of Tunis (ENIT)

University of Tunis Elmanar, BP. 37 le Belvédère, 1002, Tunis, Tunisia

sana_bouajaja@yahoo.fr, najoua.dridi@enit.rnu.tn

Abstract— In this paper, we deal with the optimal

reconfiguration of a transfer line. Such a line is composed of

serial stations. Operations of the same station are partitioned into

blocks activated sequentially. The operations of each block are

executed simultaneously by the same spindle-heads. The problem

is to group the operations into blocks and to assign them to

machines in order to minimize the line cycle time in such a way

all operations are assigned and constraints are satisfied. A

heuristic approach is proposed to solve the problem. For the

solution enhancement, improvement procedures are suggested. A

lower bound on the line cycle time is defined to measure the

efficiency of the proposed algorithm. Test instances are

performed and experimental results are presented.

Keywords— Reconfigurable transfer line, Assignment and

balancing problems, Optimization, heuristics.

I. INTRODUCTION

A Transfer Line Balancing Problem (TLBP) is studied
here. It consists on the optimization of serial machining lines.
These lines are reconfigured in industry for mass production
[1], [2], where high production rate is required. In such lines,
parts to be produced are simultaneously transferred from a
station to the next at the end of a line cycle, as shown in Fig. 1.
The line cycle time is the maximum of station times. Each
station is equipped with spindle head having several tools to
execute several operations at the same time. Multi-spindle
heads are also called blocks. The objective is to assign all
operations to blocks then to allocate the obtained blocks to
stations, minimizing the cycle time. This is similar to line
balancing problem.

Fig. 1. A scheme of a machining line

II. STATE OF THE ART

The balancing problem arises for all types of production
lines. Originally, it was formulated for mono-product assembly
lines, in the automotive industry. The objective of the problem
is to assign operations to workstations, while the precedence
constraints are satisfied and each operator has the time to

realize all operations that are assigned to him during the cycle
time [3]. In the literature, this problem is known as the Simple
Assembly Line Balancing Problem (SALBP).

In 1986, several models have been listed in [4]:
SALBP: only the most common constraints are considered: the
cycle time and precedence constraints. Depending on the
objectives, several versions of SALBP are considered, we cite
only: SALBP-1(minimizing the number of stations with a given
cycle time) and SALBP-2 (minimizing the cycle time with a
given number of stations).

The SALBP problem doesn’t reflect the industrial reality,
because of the considered simplifying assumptions. Therefore,
more general assumptions have been introduced; in this case
we speak of Generalized Assembly Line Balancing Problem
(GALBP).

GALBP: This model considers both current constraints and
other less common as: grouping operations (must be assigned
to the same station), incompatibility (operations must be
assigned to different stations), parallel stations (operations
performed simultaneously)...

Our problem called Transfer Line Balancing Problem
(TLBP) can be considered as mentioned in [5] by Dolgui and
Guischinskaya, as a version of GALBP. To our knowledge,
studies dealing with this problem aren’t numerous. A series of
studies was carried out by Dolgui and his team. Several
families of problems have been addressed in [4], assuming that:
the activation mode of blocks is sequential, parallel or mixed,
the set of possible blocks is available in advance or not.

For solving these problems, exact methods have been
proposed. They are based on:
- Graph theory: in [7], the original problem has been
transformed into a shortest path problem, after the construction
of a special graph to the problem.
- The mixed integer linear programming: the TLBP problem
was presented in [8] as a mixed performance integer linear
program. In [10], the authors have improved the of their
approach, reducing the number of variables by a more detailed
analysis of the original problem constraints and the calculation
of a lower bound for the station number.
- Branch and Bound: This method has been proposed in [9].
In this paper, a lower bound for the objective function has been
developed; it is based on a relaxation of the problem studied, in
order to transform it to a "Partitioning Problem Set" and to
calculate a lower bound for the station number.
As Transfer Line Balancing Problems are NP-hard [9],

mailto:sana_bouajaja@yahoo.fr
mailto:najoua.dridi@enit.rnu.tn

Vol.2 pp. 7-13 Journal of Operational Management & Marketing Strategies (OMMS)

© Copyright 2023

ISSN: 2961-662X

heuristic methods have been used for solving large instances.
Some heuristics have been proposed in [7]:
- RAB algorithm (Random Assignment of Blocks): this
heuristic based on COMSOAL (Computer Method of
Sequencing Operations for Assembly Lines) technique, can
build stations progressively, by a random assignment of
possible blocks to the current station.
- DFS algorithm (Depth-First Search): heuristic based on the
technique of depth-first search to find the shortest path in a
special graph. The algorithm stops when the first solution is
found.
- Mixed optimization approach: presented in [5], it is based on
the decomposition of a heuristic solution on sub-problems
which are resolved by an exact method to improve the quality
of the initial solution.
In the majority of studies found in the literature, considering
the TLBP problem, the optimization criterion is to the line cost
by reducing the number of stations and blocks. While in this
work, we aim to minimize the cycle time of the line.

III. PROBLEM DESCRIPTIONS

The problem studied in this paper consists on the
assignment of all the operations necessary to produce the final
product. This problem is introduced by analogy to SALBP-2,

ti: the execution time of operation i, i N.

Es (Eb): subsets of operations so that all operations of each
subset must be assigned to the same station (block)

Es (Eb): subsets of operations so that all operations of each
subset can’t be assigned to the same station (block)

Problem constraints can be represented as follows:

Gr(N,Dr): a directed graph representing the precedence
constraints between operations.
Gs=(N,Es) (respectively Gb=(N,Eb)): a graph representing the
inclusion constraints for operations in the same station

(respectively block). For X  N , XEs (respectively Eb) if

and only if the operations of X must be assigned to the same
station (respectively block).

G s = (N , E
s
) (Respectively G b = (N , E

b
)): a graph

modeling exclusion constraints for operations in the same

station (respectively block). For X  N , X

 E s (respectively E b) if and only if the operations of X can’t

be assigned to the same station (respectively block).

C. Objective
To solve the optimization problem we have to determine

where the criterion is to minimize the cycle time.
the reconfiguration parameters: Nk = N k1,..., N

knk
 the set of

A. Constraints
Different constraints are considered in this problem:

blocks in station k (k=1…m0), where Nkl is the set of operations
grouped into the same block l (l = 1…nk) of station k,
P = N1,...,Nm = N11,...N1n ,...,Nk1,...,Nkn ,...,Nm ,...,Nm n :a

1) Precedence constraints: the execution order of the 0 1 k 1 0 m0

operations may be partially specified due to the

technological constraints, they can be illustrated by a

graph that contains nodes corresponding to the operations

and arcs connecting the nodes. The arc (i, j) exists if the

operation i can be performed before or simultaneously

with the operation j.

2) Exclusion constraints: express the impossibility of

combining some operations in the same block or in the

same station.

3) Inclusion constraints: express the fact that two operations

must be executed in the same block or in the same station.

In addition, limitations are imposed on stations and

blocks. In fact, the capacity of stations in terms of

machining units (n0) must be taken into consideration.

Indeed, the maximum emplacement to equip the stations

is limited. In addition, a machining unit has a limited

number of tools (i0) that perform several operations at the

same time.

B. Parameters and Notations

reconfiguration decision presenting an assignment of
operations to a series of machines (k=1…m0) and repartition of
operations to nk blocks of the same station k, and minimizing
the cycle time of the line. Fig. 2 illustrates the line structure.

Fig. 2. A Machining Line structure

The cycle time of the line Tc is calculated as follows: The
activation mode of blocks that governs how to engage the
machining units of the same station is sequential, so the
working time of a station is equal to the total execution time of
its units:

The parameters used are:

N: the set of all operations,

n k

T k =
l = 1

T (N kl),  k = 1,..., m 0 ()

m0: the fixed number of stations in the line,

n0: the maximum number of blocks per station,

i0: the maximum number of operations per block,

The block running time T(Nkl) from the station k depends
on the operations set Nkl. Operations in the same block are
executed in parallel, so the execution time of a block is the
maximum time of its operations.



Vol.2 pp. 7-13 Journal of Operational Management & Marketing Strategies (OMMS)

© Copyright 2023

ISSN: 2961-662X

k

j

g

T (N kl) = Max t / j  N kl  () assignment must satisfy the following constraints: Inclusion
block, precedence, exclusion block and the capacity of the

As the line cycle time Tc is the time to process a product by
any station (time of the bottleneck station), we have:

block i0.

C. Improvement procedures

7) Improvement by exchange between blocks

Tc = Max
k = 1 ... m 0

n

(
l = 1

Max t / j  N kl ) () In order to improve the heuristic solution i.e. to assure
further reduction of the obtained line cycle time Tc_heur which
depends on the bottleneck station Sg, we proceed to move some

Since the TLBP is a generalization of the simple assembly
line problem known to be NP-hard, the considered problem is
also a complex problem and can’t be resolved by exact
methods.

IV. RESOLUTION APPROACH

In this section, we describe the overall approach we
developed to solve our problem. This approach proceeds in
four steps:

A. The Precedence graph transformation algorithm

In [8], a precedence graph transformation algorithm has
been proposed to reduce the problem size. Indeed, the inclusion
constraints to the same block can be treated in advance. Using
Gr and Eb, the N set can be divided into subsets called macro-
operations grouping the operations that must be performed in
the same block. This transformation reduces the problem size
and eliminates the Eb constraints. For more details refer to [8].

Our work takes place after this step and it is performed with
the macro-operations, obtained after this transformation. In the
following, we use the term operation to refer to macro-
operation.

B. Heuristic method

As the problem is NP-hard, we propose a heuristic to
achieve a compromise between computation time and quality
of the obtained solution. The developed heuristic method
provides an initial solution called Tc_heur, i.e. all operations are
assigned to stations and blocks respecting all the problem
constraints.

The steps of this heuristic are:

4) Assigning rank to the vertices of Gr

Thereby we determine the assignment order of operations
without violating the precedence constraints. If Lr denotes the
operations list of the same rank r, we proceed to the assignment

of an operation from Lr if all operations of the set Lx (1  x  r)
are affected, and therefore all its predecessors are already
affected. Thus, operations are assigned to the adequate station
and the appropriate block, in ascending order of their rank.

5) Allocation to the station Sk (1  k  m0)

The assignment of the current operation i to the station Sk
must satisfies the following constraints: Inclusion station,
precedence, and exclusion station.

6) Allocation to the block bkl (1  l  n0)

Once the current operation i is affected to the station Sk, we
define the block bkl of Sk where i will be performed. This

operations of this station from one block to another in the same
station.

We move from the block bgl to an adjacent block, the
operation imax gl which imposes the cycle time of this block, if
all the constraints are respected.

We opted for an exchange between adjacent blocks to
reduce the risk of violating the precedence constraints. The
idea of this procedure is to start with the movements that help
to bring the best improvement, i.e to reduce the cycle time of
the bottleneck station Tcg. After each movement, the cycle time
is calculated and the new bottleneck station is identified to
apply the same procedure again. If no exchange produced a
decrease in cycle time, the procedure stops.

8) Improvement by exchange between stations

Reducing the cycle time of the bottleneck station can also
be obtained by moving some operations from this station to the
adjacent stations. So that the precedence relations are not
violated, we move from the last block of Sg the operation

having the greatest operating time imax gn to the first block of

Sg+1 and move imax gl from the block bg1 to the last block of Sg-1.
The direction of travel is shown schematically in Fig 4.

Fig. 3. Direction of operations travel between blocks and stations

When one of the problem constraints is not satisfied
moving to the new station becomes impossible. It should be
noted that any movement must ensure the reduction of the line
cycle time. These movements can cause the appearance of a
new bottleneck from the two affected stations Sg-1 and Sg+1.

We must therefore ensure that, after these changes, the new
cycle time (which corresponds to execution time of the new
bottleneck station) is less than the old value of Tc, if not these
changes are discarded. To estimate the quality of the heuristic
solution and the improved solution or to give proof of their
optimality in some special cases, we have developed a lower
bound for Tc.

V. LOWER BOUND

An obvious lower bound for the cycle time of the line Tc is
given:

j

Vol.2 pp. 7-13 Journal of Operational Management & Marketing Strategies (OMMS)

© Copyright 2023

ISSN: 2961-662X

i
BI1 = Max(t)

i=1...N
() Microsoft Visual Studio C++ version 6.0 under Windows XP

and the programming language C++, on a PC Intel ® Pentium
® with 1.73 GHz frequency and 512 MB of RAM.

This bound corresponds to the case where there is a single
block per station and is generally so far from the optimal value
of the criterion considered.

We propose another lower bound BI2, better than BI1,
because it takes into account some constraints (exclusion
blocks, limitation of the blocks number per station n0 and
limitation of the operations number per block i0).

The calculation of this bound is obtained by relaxing the
precedence constraints, so we form blocks with operations in
the order of decreasing durations and place in each block the
maximum number of operations.

Thus, operations of large execution time occupy the same
block, and will be performed simultaneously; hence the cycle
time will be reduced. In order to achieve our goal, we have also
interest to occupy all stations. To minimize the cycle time, the
distribution of blocks on the stations must seek to balance the
load of different stations.

The steps of BI2 calculation are:

16 series of tests were randomly generated for a number of
operations N varying from 5 to 30 and a graph density D(Gr)
ranging from 0.11 to 0.7 .
Each series includes 10 instances of the same N and D(Gr) but
differ by the operations time.

For each of the 160 instances, we apply the heuristic
algorithm to find an initial solution called Sheur with a line cycle
time Tc_heur. To improve Sheur i.e to reduce Tc_heur the two
improvement procedures were used. The final solution is
Sexchange_s and the cycle time is noted Tc_impr.

A. Performance indicators

Four performance indicators are used to measure the quality
of the resolution method:

• Time_execution (s): is the computational time related

to the heuristic method and improvement algorithm.

• Improvement (%): is the improvement percentage of

Sheur, calculated as follows:

A. Construction of blocks

Take the N operations in descending order of their
operating time, and form blocks with the maximum number of
operations i0.

improvement(%) =

(Tc _ heur − Tc _ impr)

Tc _ heur

100

()

N
We obtain n blocks b1, b2,..., bn , (n = 

i0

integer part of a) with durations such that:

+1. a is the

• Gap1 (%): is the difference between the value of the

heuristic solution Tc-heur and the optimal solution BI.

Gap1(%) =
Tc _ heur − BI

100

T(b1)>T(b2)> ...>T(bn) and the execution time of a block bk:

T (bk) = Max(ti), k = 1...n .
ibk

During the construction of these blocks, if the current
operation i to assign to the block under construction don’t
respect the exclusion block constraints, it’s left to a later stage

()

BI

• Gap2 (%): is the deviation of the improved solution

Tc-imp from the value of the optimal solution BI.

and we move to the next operation and verify the same thing.

B. Distribution of blocks to stations

First, we assign the m0 first blocks bk at each station. The
execution time of each station Sk, at this stage, is T(Sk) = T(bk).

Gap2(%) =
Tc _ impr − BI

100
BI

B. Performance of improvement procedures

()

If there are blocks not yet allocated, the current block is placed
in the station with the lowest execution time. Repeat until all
blocks are assigned.

At each block’s assignment to a station, we have to update
the station execution time. At the end, we should have balanced
stations in terms of execution time thus the cycle time is
minimized.

VI. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed method and to
identify the impact of some parameters (density D(Gr) of the
precedence graph Gr and the problem size i.e the number of
operations N), an experimental study is developed. We used the

For the 160 instances, we report the experimental results
with a cloud of points in Figure 5 showing the improvement
percentage. Note that for almost all instances, the improvement
varies between 0.72% and 10.67% and rises to 22.95% for N =
10. We can say that the improvements are significant.

In fact, for lines of mass production, the line performance is
measured by its cycle time, then, even a small reduction of Tc,
implies a considerable productivity gains and benefit from
economies of scale. However, this reduction of Tc_heur is not
guaranteed for any instance. We note that for some instances,
the application of improvement procedures has no effect. It
would be interesting to know if the heuristic solution we have
is optimal.

Vol.2 pp. 7-13 Journal of Operational Management & Marketing Strategies (OMMS)

© Copyright 2023

ISSN: 2961-662X

GAP1 (%)

4,70% 4,03% 2,01%
21,48%

10,74%

6,71%

2,08%

2,68%
4,70% 20,13%

10,74%

0%

] 0%,10%]

] 10%,20%]

] 20%,30%]

] 30%,40%]

] 40% ,50%]

] 50%,60%]

] 60%,70%]

] 70% ,80%]

] 80% ,90%]

] 90% ,96%]

Fig. 4. Improvement percentage for different N

9) Deviation of the obtained solutions relative to BI:

The graphs in Fig. 5 and 6 visualize the percentage of
solutions whose gap is equal to 0% (i.e the solution is optimal)
and that the value of the gap is in the following intervals: from

 0%, 10%  to  90%, 96%] with a pitch of 10%.

Fig. 5 shows the difference between the heuristic solution
and the lower bound for the set of generated tests. It was found
that only 2.01% (respectively 4.03% and 4.70%) cases have a

Gap1 which belongs to the interval  90%, 96%] ( respectively

80%, 90%] and 70  %, 80%]), so for a small proportion, the
heuristic solution is far from the lower bound.

In the other side, for 21.48% of the heuristic algorithm tests
provide an optimal solution. It is obvious that for these 21.48%
of instances, which we have given a proof of optimality,
Improvement (%) will be zero; since Tc_heur reached the lower
bound so the heuristic solution can’t be improved furthermore.
Looking at Fig. 6, we notice that 23.49% of the improved
solutions are optimal. It is noted that for 8.57% of the optimal
case, optimality is reached after applying improvement
procedures, while the rest has already been obtained directly by
the proposed heuristic.

Comparing the two Fig. 5 and 6, it is clear that the value of
Gap2 is lower than that of Gap1. This leads us to conclude that
the application of the improvement procedures fulfill the
function for which they were proposed i.e. to reduce the gap
between the obtained solution and the lower bound.

Fig. 5. Gap between Sheur and BI

Fig. 6. Gap between Simpr and BI

C. Variation of results according to N

The performance of the proposed resolution approach is
measured by the improvement percentage of the heuristic
solution Improvement (%) and the total execution time. To
evaluate the behavior of these criteria for different number of
operations N and for the same density D(Gr), we summarize the
results of the tests in Tables 1, 2 and 3.

TABLE I. RESULTS ACCORDING TO N (LOW DENSITIES)

N
Improvement (%) Time_execution (s)

Min Max Min Max Moy

5 0,00% 0,00% 13 25 21,2

10 ⎯ 22,95% 37 55 45,1

15 ⎯ 8,83% 23 77 46,9

17 ⎯ 10,14% 49 67 58,9

20 ⎯ 11,11% 46 72 60,5

23 ⎯ 5,29% 44 109 67,7

25 ⎯ 6,82% 59 112 76,9

30 ⎯ 10,67% 65 283 123,7

TABLE II. RESULTS ACCORDING TO N (AVERAGE DENSITY)

N
Improvement (%) Time_execution (s)

Min Max Min Max Moy

5 0,00% 0,00% 12 26 17,4

10 ⎯ 22,95% 23 49 33,1

15 ⎯ 0,00% 25 54 38,4

20 ⎯ 3,08% 31 74 46,9

TABLE III. RESULTS ACCORDING TO N (HIGH DENSITY)

N
Improvement (%) Time_execution (s)

Min Max Min Max Moy

5 0,00% 0,00% 12 26 17,4

10 ⎯ 22,95% 23 49 33,1

15 ⎯ 0,00% 25 54 38,4

20 ⎯ 3,08% 31 74 46,9

In Table 1, the problem size N varies (N = 5, 10, 17, 20, 23,

25, 30) for a family of low densities (0.11  D(Gr)  0.2).
Tables 2 and 3 show respectively the variation of Improvement
(%) and Time_execution (s) according to N, for an average
density (D(Gr) = 0.5) and high density (D(Gr) = 0.7).

10) Evolution of Improvement (%) according to N

Note that the improvement percentage of Sheur doesn’t
depend on the number of operations to affect but rather
depends on various problem constraints (precedence, exclusion
for stations and blocks, inclusion for stations, m0, n0 and i0),

GAP2 (%)

3,36% 4,03% 2,01%

9,40%
23,49%

14,09%
8,72%

2,68%

2,68%
12,08% 17,45%

0%

] 0%,10%]

] 10%,20%]

] 20%,30%]

] 30%,40%]

] 40% ,50%]

] 50%,60%]

] 60%,70%]

] 70% ,80%]

] 80% ,90%]

] 90% ,96%]

Vol.2 pp. 7-13 Journal of Operational Management & Marketing Strategies (OMMS)

© Copyright 2023

ISSN: 2961-662X

since operations exchange between the blocks of the bottleneck
station or operation exchange between the station and its
adjacent stations, is possible only when all constraints are
satisfied.

- Evolution of Time_Execution(s) according to N: from the
three tables, we can study the Time_execution evolution shown
in Fig. 8. It is obvious that whenever the operation number
increases, the average computation time increases also, because
we spend more time to allocate these operations on different
stations and blocks. But it still remains low for all the 160
instances, it ranges from 15s (for N = 5 and D (Gr) = 0.7) to
123s (for N = 30 and D (Gr) = 0.11).

D. Variation of results according to D(Gr)

- Improvement evolution according to D(Gr): we report the
evolution of the average improvement in Fig. 7. These results
show that whenever D(Gr) increases the improvement
decreases. For high densities, the average improvement of the
heuristic solution by managing the bottleneck station becomes
low or zero. This behavior can be explained by the fact that a
high density reflects that precedence relations aren’t flexible to
perform exchange of operations between the blocks of the
bottleneck station or the exchange with the adjacent station.

Fig. 7. Evolution of the Mean Improvement according to N and D(Gr)

- Time_execution evolution according to D(Gr): returning
to Fig. 8, we can see the details of the time resolution behavior
for series of tests with N = 5, 10, 15, 20. For the same N, we
must observe the three abscissas labeled (D(Gr) = 0.2, D(Gr) =
0.5 and D(Gr) = 0.7), which allows us to study the influence of
the D(Gr). We see a direct link between D(Gr) and the
computation time. Indeed, observing each series separately, we
find a significant reduction of the execution time for a high
density (D(Gr) = 0.7). Thus, it can be concluded for each
series, the family of tests at low density (D(Gr) = 0.2) is always
more difficult to solve than tests with an average density
(D(Gr) = 0.5). Similarly, the series with an average density are
more expensive in computation time than series with the
highest density. The difficulty of low-density instances can be
explained by the large number of possible operations
assignments to stations and blocks. So, when the density is
higher, the precedence constraints become numerous and the
problem becomes less flexible and the solution is obtained
rapidly. However, the two parameters N and D are not the only
factors that influence the computation time, especially as the
difficulty in some instances, may be due to the numerical
values of the input data which are generated randomly.

Fig. 8. Evolution of the Mean Execution Time according to N and D(Gr)

VII. CONCLUSION

According to the experimental results, we obtain in 23.49%
of cases, an optimal solution. In addition, in 32.21% of cases,
the deviation from the lower bound does not exceed 10%.
Moreover, the proposed approach is able to produce a solution
in a very low computation time. By managing the bottlenecks
stations, reducing cycle time of the machining line is up to
22.95%. In general, the rate of good solutions obtained is
interesting then we can say that our resolution approach is quite
effective. The use of metaheuristics can improve more the
quality of the obtained solution, and is in our opinion a logical
sequence to this work.

REFERENCES

[1] O. Guschinskaya, and A. Dolgui, “A Transfer Line Balancing Problem
by Heuristic Methods: Industrial Case Studies,” Decision Making In
Manufacturing and services, vol. 2. 2008. NO.1-2. pp. 33-46.

[2] H. Chehade, A.Dolgui, F. Dugardin, L. Makdessian, and F.Yalaoui,
”Multi-objective Approach For Production Line Equipment Selection”,
Management and Production Engineering Review, vol. 3. Number 1. pp.
4–17, March 2012..

[3] C. Boutevin, M. Gourgand et S. Norre, “Méthodes d’optimisation pour
le problème de l’équilibrage de lignes d’assemblage,” MOSIM’03, 2003.

[4] I. Baybars, “A survey of exact algorithms for the Simple Assembly Line
Balancing,” Management Science, 32, pp. 909-932, 1986.

[5] O. Guschinskaya, et A. Dolgui, “Equilibrage des lignes d’usinage : la
résolution du problème de grande taille,” École Nationale Supérieure des
Mines de Saint-Étienne, Rapport de recherche 2006-500-011, Oct. 2006.

[6] S. Belmokhtar, “Lignes d’usinage avec équipements standard :
modélisation, configuration et optimisation,” Thèse en Génie Industriel,
École Nationale Supérieure des Mines de Saint-Étienne, Déc. 2006.

[7] A. Dolgui, N. Guschinsky, G. Levin and J. Proth, “Optimisation of
multi-position machines and transfer lines,” European Journal of
Operational Research, 185, pp. 1375-1389, 2008.

[8] A. Dolgui, N. Guschinsky, Y. Harrath and G. Levin, “Une approche de
programmation linéaire pour la conception des lignes de transfert,” in
Proc. MOSIM’01, 2001, pp.353-361.

[9] A. Dolgui, A et I. Ihnatsenka, “ Lignes d’usinages avec têtes
multibroches : un nouveau problème d’optimisation,” MOSIM’06, 2006.

[10] A. Dolgui, , N. Guschinsky and G. Levin, ”Enhanced mixed integer
programming model for a transfer line design problem,” Computers &
Industrial Engineering 62, pp. 570–578, 2012.

