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Abstract—In this article, we address the problem of impre-
cision in assessing the systems performance using Petri nets.
The elementary probabilities usually considered in Petri nets are
replaced by interval. It allows experts to express their uncertainty
concerning the basic parameters of systems and to assess the
impact of this uncertainty on the systems unavailability. We show
how the imprecision induces significant changes on the systems
performance. The proposed method ensures the relevance of the
results.

I. INTRODUCTION

The performance evaluation of the industrial systems must
be proven by using adopted models. Various techniques nev-
ertheless are recommended in the appendices of the safety
standard without however excluding any relevant method of
probabilistic calculation. Between the quoted methods, one
finds the faults tree, the reliability diagram blocks as well as
the Petri nets. The performance evaluation must be obtained
by quantitative methods. In this context, Petri nets are good
formal models to represent different states that can take and its
characteristic parameters can take [1], [2]. For instance, it is
possible to model different failure modes of the components,
repair operation and common cause failure. In system unavail-
ability studies, probabilities are often considered precise and
perfectly known. Real problems are not easily captured with
a precise knowledge of the probabilities involved [3]. This
problem of imperfect knowledge about the probability values
is known and handled in various ways. Probability interval
is a simple and attractive representation of imprecision [4].
The problem of precision is considered by other authors using
imprecise probabilities [3] or fuzzy numbers [5], [6].

In this work, we propose to use work of Kozine [4] within
the framework of evaluation of the systems unavailability
by modeling the imprecision on the characteristic parameters
knowledge of the components. The second section of the arti-
cle is devoted to the study of the systems unavailability using
stochastic Petri nets. The third section sticks to the modeling
of the knowledge imprecision of the system parameters as
intervals, and the integration of the imprecise parameters in
the stochastic Petri nets for the unavailability evaluation. The
last section is devoted to the study of a practicable case relating
to the industry of process.

II. UNAVAILABILITY MODELING

We consider the case of a system that, once broken, can
be repaired. The behavior of a repairable system over time is
therefore determined not only by the way in which it fails, but
also by the way in which it is repaired, and we can consider
the life of a system as an alternation between two states: Up
(system is functioning) and Down (system is not functioning
and it is under repair). It is clear that if a system is subject
to failures and repairs. In this case the dependability of the
system is characterized by the availability function A(t). The
reliability function is defined as the probability that the system
is Up at time t.

A(t) = Prob{at time t, state = Up} (1)

The unavailability U(t) is instead the probability that the
system is Down at time t.

U(t) = 1−A(t) = Prob{at time t, state = Down} (2)

Assuming that we are able to characterize the failure distri-
bution of a component λ and its repair distribution µ , we
have seen how to predict its unavailability. But if a system
is a complex aggregate of components, it may be difficult to
associate directly to the system a failure and repair distribution.
We show how to compute the performance (unavailability) of
a repairable system.

The safety system unavailability must be quantitatively
proven using suitable models. No particular model is recom-
mended neither in IEC 61508 nor in IEC 61511, nevertheless
some of the well known models are cited in their appendices.
Among these models, one finds faults tree [7], [8], reliability
block diagram [9] as well as Petri nets [5], [2].

The use of generalized stochastic Petri nets allows to take
into account the occurrence of faults and their influence on
the system behavior [10], [11].

A. Generalized Stochastic Petri Nets

The assessment is associated to the computation of the sys-
tems unavailability on demand [12]. In this context, stochastic
Petri nets are good formal models of all the system states
considering all the events met (failure, maintenance, etc) and
all the studied parameters (failure rate, CCF factor, repair
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rate, etc) [2]. They bring a relevant modeling suitable for
the behavior of the systems studied and are preferred for this
work [13], [11]. The Generalized stochastic Petri nets have
two different classes of transitions. Timed transitions : which
a random exponentially distributed firing delays are associated
to transition, immediate transitions : which fire in zero time
with priority over timed transitions [10].

A Generalized stochastic Petri nets is an eight-tuple
(P;T ;Pre;Post;M0;V1;V2;W ), where:

• P = {p1, p2, ..., pk}, is a finite set of places, (drawn as
circle).

• T = {t1, t2, ..., tl}, is a finite set of transition, (drawn as
bars).

• Pre is the pre-incidence function and defines weighted
arcs between places and transitions.

• Post is the post-incidence function, which defines weights
of arcs from transitions to places.

• M0 = (mp10
,mp20

, ...,mpk0
): M0 ∈N+, M0 is is the initial

marking of place p ∈ P and defines the number of tokens
in the place p.

• V1 ⊆ T is the set of timed transition, V1 ̸= /0
• V2 ⊂ T is the set of immediate transitions V1 ∩V2 = /0,

V1 ∪V2 = T
• W = (ω1,ω2, ...,ωl) is an array whose entry ωi ∈R+

– If ti is a timed transition, wi is the parameter of the
negative exponential probability distribution function
of the transition firing delay.

– If ti is a is an immediate transition, wi is a weight
used for the computation of firing probabilities of
immediate transitions [11].

Let Mi be a marking of the petri net N, S is a vector having
the some dimension of the vector T representing the sequence
of fineable transition. If is a firing sequence from Mi and that
M j is reachable from Mi, one notes Mi[S⟨M j or Mi[→ M j, the
new marking is defined by :

M j = Mi +(Post −Pre).S (3)

The probability distribution function of the sojourn time in a
marking Mi corresponds to the probability distribution function
of the minimum among the firing times of the transitions en-
abled in the same marking; it thus follows that the probability
that a given transition tk ∈ E(Mi)),fires (first) in marking Mi
has the expression :

P{tk/Mi}=
ωk(Mi)

∑
j:Tj∈E(Mi)

ω j(Mi)
(4)

with ωk the firing rate of tk, and E j(Mi) the set of transitions
whose firings bring the net from marking Mi to marking M j.

The system unavailability is computed as the sum of all Pj
where j represents the state probabilities where the system is
Down [2].

III. UNAVAILABILITY IMPRECISE MODELING

When safety system feedback data is weak and handled
probabilities may seem weakly credible, referring to the un-
certainty principle (what is precise is more uncertain). The

uncertainty on a parameter can be represented in several ways.
A probabilistic view based on the Monte Carlo sampling
led to the modelling of uncertain parameters by a uniform
distribution on the set of values the parameters can take. In
our particular case, it can be considered in Petri nets. Another
simple representation of imprecision is obtained by interval
valued probabilities [6] where no assumption is made about
the distribution.

A. Intervals

The imprecision can be represented very easily and suitably
by using intervals without making any assumption on the
distribution of probabilities. The interval bounds are those
used for the distribution. There is no need for a Monte Carlo
sampling but it is relevant to base the calculations on the
interval theory [14]. By definition, an interval is a closed and
bounded set of real numbers. If x indicates a bounded real
variable, then the interval [x] to which it belongs to is defined
by :

[x] = [xL,xR] = {x ∈ R/xL ≤ x ≤ xR} (5)

where xL and xR are real numbers representing respectively
the lower and upper bounds of x. The intervals calculation
is frequently used to model the imprecision on system pa-
rameters. Uncertainties are then represented as interval valued
probabilities and the performances calculation is equivalent to
a worse case and better case calculation. The interest of this
method lies in its simplicity. Nevertheless, interval arithmetic
suffers from subdistributivity property when variables are
repeated in the model. Thus, the resulting imprecision is more
pessimistic (conservative) than necessary.

B. Interval Generalized Stochastic Petri Nets

We mentioned that our knowledge of the characteristic
parameters values is imperfect. We model the imprecision of
these rates by value intervals as previously defined.

The failure rate is represented by an interval [λ ] (cf.
equation 5). [λ ] represents the interval of values which can
be taken by λ and is bounded by two values [λL,λR]. the
repair rate µ is also modeled by an interval [µ ]. The imprecise
characteristic parameters [λ ] and [µ ] integrate directly the Petri
nets transition of the studied system (cf. eq. 4).

In order to compute all [P{tk/Mi}] , the interval bounds have
to be determined. For that, the following equations should be
solved : 

PL{tk/Mi}= min( ωk(m)
∑

j:Tj∈E(Mi)
ω j(m) )

PR{tk/Mi}= max( ωk(m)
∑

j:Tj∈E(Mi)
ω j(m) )

(6)

Our goal is to compute the system performance starting from
its imprecise characteristic parameters such as the failure rate
and the repair rate, by using the imprecise Petri nets. The
system unavailability can be computed by the combination of
probability of failure of all sub-system providing the set of
safety function.
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C. Assumptions

In order to assess the system unavailability, we made the
following assumptions:

• All components have constant failure rates λ , i.e. the
times to failure are exponentially distributed.

• No other types of dependency between components are
relevant.

• Common cause failures (CCF) are not considered.

IV. APPLICATION: STUDY OF A SAFETY SYSTEM

The system given in figure 1 has been studied in [2] and is
used for application of the proposed approach. The system is
composed of three subsystems. Pressure transmitter (PT), logic
solver (LS) and final control element (FC). Upon detection of
either high temperature or pressure, the safety system cuts the
reactor supply off in order to prevent a runaway reaction. Each
subsystem is parallel redundant. The field instrumentation
comprises both the pressure and temperature sensor/transmitter
subsystems, and the final control element subsystem (basically
composed of a set of actuator and shutdown valve). The three

PT1 PT2 PT3 

SDV 

SV 

W1

Logic 
Solver 
2oo3 

Figure 1: Safety Instrumented System (SIS)

subsystems are to be modelled in a logical series structure. The
reliability block diagram of the SIS is given in Figure 2. The
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Figure 2: Safety system Reliability Block-Diagram

subsystems of a SIS are illustrated in Figure 2. Each subsystem
may have one or more voted groups of channels. A channel
is a structure of one or more elements and can independently
perform a channel safety function. Using the stochastic Petri
nets method proposed in this paper, the system unavailability
is determined according to the characteristic parameters of
components. The reliability parameters of the SIS components
are given in Table II.

The equivalent Petri nets of the studied safety system is
given in figure 3.
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Figure 3: Safety system Petri nets

Table I: Places, transitions and their firing rates used in the
model

Places Interpretation Transitions Interpretation
p1 Working state of PT1 T1 Failure rate of PT1, λPT
p2 Working state of PT2 T2 Failure rate of PT2, λPT
p3 Working state of PT3 T3 Failure rate of PT3, λPT
p4 Failed PT1 T4 Repair rate of PT1, µPT
p5 Failed PT2 T5 Repair rate of PT2, µPT
p6 Failed PT3 T6 Repair rate of PT3, µPT
p7 Working state of SV T7 Failure rate of SV , λSV
p8 Working state of SDV T8 Failure rate of SDV , λSDV
p9 Failed SV T9 Repair rate of SV , µSV
p10 Failed SDV T10 Repair rate of SDV , µSDV
p11 Failed of actuator layer T11 Failure rate of LS, λLS
p12 Failed of sensor layer T12 Repair rate of LS, µLS
p13 Failed of logic unit layer T13→T20 Immediate transition
p14 Working state of LS and SIS

Using the interval generalized stochastic Petri net method
the system performance is determined according to the char-
acteristic parameters of components modeled by interval. The
characteristic parameters of the system components are given
in table II. The failure rate λi as well as the repair rate µi of
each subset of components are described by intervals provided
by experts. Considering only the imprecision of λi and µi, we
can evaluate the influence of the safety system performance.

Table II: Numerical data

System Components λ (×10−4/h) µ(×10−2/h)
PTi [4.30,6.00] [1.67, 3.12]
LogicSover [1.20,3.10] [2.10, 4.15]
SDV [7.26,9.05] [8.33, 12.5]
SV [7.26,9.05] [8.33, 12.5]

The system unavailability USys can be computed by the com-
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bination of probability of failure of all sub-system providing
the safety function according to Eq.7. The interval generalized
stochastic Petri nets approach allows to simplify the model of
the system. It is expressed by the following formulas under
the assumption of rare events:

USys(t) =USens(t)+ULS(t)+UAct(t) (7)

In this study, we assume that each subsystem is tested in-
dependently of each other at its own frequency. Thus, the
problem complexity does not increase since each subsystem
can be studied independently. Figure 4 shows the system
failure probability value. This probability of failure is equal to
the asymptotic system unavailability computed by the method
of stochastic Petri nets from imprecise characteristic param-
eters, modeled by value intervals. The distribution of system
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Figure 4: System Unavailability Variation

unavailability is bounded by upper and lower values, according
to the interval defined by the characteristic parameters, thanks
to monotonic inclusion property of the reliability function of
the system. The resulting unavailability is the interval given in
Figure 4. This failure probability varies from 0.6402× 10−3

to 2.643× 10−3. As shown in Figure 4, the uncertainty on
the failure and repair rates lead to a possible change in the
performance level of system, whereas an uncertain but precise
value would have provided only one performance of safety
system. If a performance classification without ambiguity
is desired, it is then necessary to change either the set of
components or the system architecture (level of redundancy)
or increase our knowledge on the characteristic parameters to
reduce its uncertainty.

V. CONCLUSION

In this article, a approach by intervals in stochastic Petri nets
to assess the safety system performance has been proposed.
This approach uses value intervals to represent the uncertainty
on the probability of failure of the safety system components.
Failure and repair rates are considered in this study. The com-
plex nature of these failures makes their quantification more
difficult and more uncertain. The proposed approach allows
the analysis of the influence of imperfect knowledge of several
factors to the imprecision of the SIS unavailability. It clearly

shows that characteristic parameters are influencing the results.
So, the analysis simultaneously provides an assessment and a
sensitivity analysis at the same time. The obtained interval
value of the unavailability shows that the imprecision due to
imperfect knowledge could involve variations concerning the
level of the performance of the Safety system. These variations
can put the decision maker in a risky situation that asks for
a dedicated strategy to reduce the qualification uncertainty in
order to reduce the legal responsibility of the decision maker.
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