
International Journal of Scientific Research & Engineering Technology (IJSET)
ISSN: 2356-5608, Vol.3, issue 3
Copyright IPCO-2015-pp.30-36

An ABC Algorithm Minimizing Regular Objectives
for Blocking Permutation Flow Shop

Scheduling Problem
Nouha Nouri#1, Talel Ladhari#*2

#
Ecole Supérieure des Sciences Economiques et Commerciales de Tunis,

University of Tunis, Tunisia
1
nouri.nouha@yahoo.fr

*
College of Business, Umm Al-Qura University,

Umm Al-Qura, Saudi Arabia
2
talel_ladhari2004@yahoo.fr

Abstract— In this paper, we expose a new meta-heuristic based

on the artificial behavior of bee colony (ABC) for solving the

blocking permutation flow shop scheduling problem (BFSP)

subject to regular objectives. On three main steps, the proposed

algorithm iteratively solved the BFSP under three fixed measure

(makespan, total flowtime, or total tardiness criterion). Discrete

job permutations and operators are used to represent and

generate new solutions for the employed, the onlookers, and

scout bees, respectively. The performance of this algorithm is

tested on the well-known benchmark sets of Taillard, and

Ronconi and Henriques. The computational results assert the

effectiveness of this heuristic in comparison with some recently

proposed state-of-the-art algorithms. So, new best known

solutions for the benchmark sets are found for the considered

problem.

Keywords— Flow Shop, Blocking, ABC, Makespan, Total

Flowtime, Total Tardiness

I. INTRODUCTION

The traditional permutation flow shop problem plays a
primary role in the scheduling theory. It is one of the first
machine scheduling models that has been explored since the
publication of Johnson's paper for solving the two machine
flow shop problem [15]. The issue is to specify a complete
sequence of all jobs, the same for each machine that
minimizes some criterion. The most studied optimization
measure is the minimization of the makespan (Cmax) which
defines the time at which the last job in the sequence is
completed and leaves the system. This problem with

makespan criterion is denoted as F|prmu|Cmax; using the α|β|γ
notation of Graham et al. [12]. Various other scheduling
features have been studied and analyzed in the literature: the
total flow time, the maximum lateness, the maximum
tardiness, the maximum earliness, and other similar criteria.
All the above objective functions are so-called regular
performance measures. A regular performance measure is a
function that is non decreasing in {C1,C2,...,CN}: measure that
is always improved by reducing job completion time. Anyway,

it is commonly assumed whatever the objective that buffer
storage capacity between machines is limitless.

Now, if we imagine no intermediate buffer exists between
machines, then the problem becomes a blocking permutation
flow shop (BFSP) [32]. Since there are no buffers in the shop,
a job has to stay on a machine until its next machine is free.
This classical blocking situation is called 'Release when
Starting Blocking (RSb)'.

One of the pioneering works on this problem is [26] who
showed that the F2|blocking|Cmax problem may be reduced to a
special case of the traveling salesman problem which may be
resolved in polynomial time using the famous Gilmore and
Gomory algorithm [9]. For m>2 the problem is proved to be
strongly NP-hard [13]. As well, the same problem with total
flow time criteria and two machines is strongly NP-hard [29].
The two-machine flow shop tardiness case is also NP-hard
[18].

Heuristic algorithms used in the literature may be broadly
divided into constructive and improvement heuristics.
Among the proposed constructive heuristics for the BFSP with
makespan criterion, we may refer to the Profile Fitting (PF)
[20] developed to deal with the assembly line scheduling
problem; the far-famed NEH (Nawaz-Enscore-Ham) [21]
originally presented for the traditional flow shop problem
(made up of two phases: creation of the initial sequence of the
jobs and the iterative insertion procedure); the minmax (MM),
the combination of MM and NEH (MME), and the
combination of PF and NEH (PFE) [30]. For the BFSP with
total flow time criterion, we refer to the modified NEH
heuristic called NEH-WPT [35] where the superiority of
NEH-WPT over NEH is proved. In [32], a constructive
heuristic and a GRASP-based heuristic are settled for the
BFSP with total tardiness criterion.

Regarding the improvement heuristics, we may refer to the
heuristic used to minimize the cycle time in a blocking flow
shop [1] which can also be employed to the BFSP under
makespan criterion. As well, the Genetic Algorithm (GA)
proposed in [5] to solve large size flow shop problems and

International Journal of Scientific Research & Engineering Technology (IJSET)
ISSN: 2356-5608, Vol.3, issue 3
Copyright IPCO-2015-pp.30-36

based on the slowing down restriction idea deals with the
blocking problem as a special case. Subsequently, in [31]
authors proposed (Ron) algorithm based on blocking-lower
bound that out-performed algorithms presented in their earlier
studies. In [11], a fast Tabu search (TS) and an improved TS
algorithms (TS+M) based on multi-moves technique are
exposed. Experimental results demonstrated that both of them
are relatively more rapid and effective in finding better
solutions than GA [5] and Ron [31]. More recently, the
reference [34] proposed a Hybrid Discrete Differential
Evolution (HDDE) algorithm for the Fm|blocking|Cmax.
Computational results demonstrated that HDDE algorithm not
only out performs TS and TS+M algorithms but also gets
better results than the Hybrid Differential Evolution (HDE)
algorithm [25]. We refer also to the reference [27] where an
Iterated Greedy (IG) algorithm is proposed which makes use
of the insertion method of the NEH heuristic.

Meanwhile, in [35] a hybrid modified global-best Harmony
Search (hmgHS) algorithm is proposed for solving the
blocking problem with the total flow time criterion. Similarly,
in [36] the hmgHS algorithm is submitted under the same
problem and was proven its superiority over the IG [27]. Later,
a Discrete Artificial Bee Colony algorithm (DABCD) is
proposed [8] and compared with several other powerful
algorithms, including DABC proposed in [33] (denoted by
DABCT), HDDE, and the IG algorithm. Three other effective
hybrid DABC algorithms are proposed in [14].

As well, by combining the respective advantages of
Artificial Immune Systems (AIS) and the annealing process of
Simulated Annealing (SA), an effective Revised AIS (RAIS)
algorithm is proposed minimizing the makespan [19]. The
computational results showed that the heuristic provide better
performances than the leading approaches for all problem
sizes. In [23], a three-phase algorithm for the Fm|blocking|Cmax
is presented: higher efficiencies of the algorithm over the IG
algorithm. In [37] a Discrete Particle Swarm Optimization
algorithm with self-adaptive diversity control is proposed to
solve the same problem. After that, a high performing
Memetic Algorithm (MA) for the blocking problem
minimizing makespan is appeared [22], where a constructive
heuristic is presented (combining PF and NEH) and a memetic
algorithm is proposed based on path-relinking based crossover
and a referenced local search. At last, in [6], a chaos-induced
discrete self organizing migrating algorithm is applied to the
blocking problem and tested on the Taillard problem sets.

Unlikely, there is a great work dedicated to developing both
exact and heuristic algorithms for both makespan and total
flow time criteria; it seems that little work has dealt with the
total tardiness criterion until recently.

In particular, using the LBNEH method suggested in [2],
Armentano and Ronconi [3] proposed a Tabu Search
procedure to obtain an initial solution for their heuristic. In
[32], a new NEH-based method called (FPDNEH) and a
Greedy Randomized Adaptive Search Procedure (GRASP)
were proposed. As well, in reference [28] an efficient Iterated
Local Search algorithm (ILS) coupled with a Variable

Neighborhood Search (VNS) is exposed to minimize the
tardiness measure. A rapid survey on flow shop with blocking
and no-wait constraint in process can be found in [13].

In this work, a discrete algorithm based on the performance
of foraging artificial bees colony is proposed to solve the
BFSP under three regular objectives. We hybridize the
algorithm with a local search technique and provide new
schemes for the employed, onlookers, and scout bees phases.
Computational experiments are done using the two well
known Taillard and Ronconi and Henriques benchmark sets.

Thus, the rest of this paper is organized as follows: In
Section 2 we briefly introduce the BFSP problem. We
describe in Section 3 our blocking algorithm. The experiments
results are reported in the next section. Finally, in section 5,
we present our concluding remarks.

II. PROBLEM STATEMENT

We consider the blocking problem to minimize separately,
the makespan, the total flow time, and the total tardiness in the
M-machine permutation flow shop environment. The problem
can be defined as follows. At time 0, there are N independent
jobs to be sequentially processed on M machines, having no
intermediate buffers. All jobs follow the same route in the
machines. Since there is no buffer between each successive
pair of machines, intermediate queues of jobs waiting in the
system for their next operation are not allowed. Therefore, a
job cannot leave a machine until the next machine
downstream is free. This blocking situation prevents
processing of other jobs on the blocked machine. We call
down the following assumptions to define the BFSP:

• There is precisely one task corresponding to the
processing of job i (i=1,2,...,N) on each machine j
(j=1,2,...,M) which requires a processing time pij, and
may have a given due date Di which is the time point at
which the job should finish.

• Each job may be processed on only one machine at any
time, and each machine can process only one job at a
time.

• Jobs are ready for processing at the beginning and have
no precedent constraints among them. Preemption is not
allowed.

Considering the above-mentioned assumptions, the
objectives is to find out a sequence for processing all jobs on
all machines so as to singly minimize the maximum
completion time, the total flow time, and the total tardiness.

We consider only schedules in which the jobs are processed
in the same order on all machines (permutation schedules).
According to the classifications mentioned in Graham et al.
[12], the blocking instances considered in this study are as

follows: Fm|block|Cmax, Fm|block|∑Cj, and Fm|block|∑Tj
representing respectively the BFSP with makespan, total
completion time, and total tardiness criteria.

Let: Π:=(ᴨ1, ᴨ2,..., ᴨN) be a solution for the problem, where
ᴨi denotes the ith job in the considered sequence; dᴨi,j

(i=1,2,...,N; j=0,1,2,...,M) represents the departure time of job
ᴨi on machine j, where dᴨi,0 denotes the time job ᴨi starts its

International Journal of Scientific Research & Engineering Technology (IJSET)
ISSN: 2356-5608, Vol.3, issue 3
Copyright IPCO-2015-pp.30-36

processing on the first machine. The corresponding values of
makespan of Π may then be calculated in O(nm) as
Cmax(Π)=CᴨN,M}(Π), where Cᴨi,M=dᴨi,M is the completion time
of job ᴨi on machine M that can be calculated using the
following expressions presented in [24]:

Using again the above recursion, we may also calculate the

total flow time (TFT) and the total tardiness (TT) as follows:

TFT(Π) = ∑N
i=1(Cᴨi,M) and TT(Π) = ∑N

i=1(Ti) where Ti =

max{0,(Cᴨi-Di)}. We choose to calculate the due dates Di

following the Total Work Content (TWK) rule [4]: Di =

τ*(∑M
j=1(pᴨi,j)). τ is the due date tightness factor and

(∑M
j=1(pᴨi,j)) is the total processing time of job ᴨi on all

machines. τ is taken in the range [1-3] to make the job's due
date loose, medium or tight randomly.

III. THE DISCRETE ARTIFICIAL BEE COLONY ALGORITHM FOR

THE BFSP

The ABC algorithm is a new swarm intelligence based
approaches [16] originally designed for continuous function
optimization. The artificial bees are sorted into three groups:
employed, onlooker, and scout bees. The number of onlookers
and employed bees corresponds to the number of food sources
SN surrounding the hive. At the start, the algorithm generates
randomly initial population of solutions, which are then
randomly assigned to the employed bees and evaluated. Later,
the population iterates the search processes of the employed,
onlooker and scout bees. The employed or onlooker bee
produces new solutions by modifying probabilistically their
current solutions, and tests their fitness value. When all the
employed bees end the search process, they share out
information with the onlooker bees. The onlooker bee checks
these information and picks a food source with a probability
related to its nectar quantity. If a solution is not improved after
a fixed number of Limit trials, that solution is neglected by its
employed bee.

In the following we describe all parameters and operators
used in the proposed ABC for the BFSP under some fixed
criterion.

A. Population initialization

We initialize the population which consists of a set of food
sources. 'x' initial solutions are obtained using the PF-NEH(x)
heuristic developed in [23]. So, while jobs are being arranged
in an increasing order of the sum of their processing times at
the first stage of the PF-NEH(x) algorithm, x solutions are
produced iteratively where at each iteration of the algorithm

the first ranked job is picked from the initial jobs ordering and
then a finite solution is constructed based on both the PF
method and the NEH's insertion-stage. Only the last λ jobs in
the sequence produced by the PF method undergo the NEH's
insertion-stage. The remaining (SN-x) members of the colony
are randomly generated.

Meanwhile, to improve the quality of the initial explored
food sources, we perform the referenced local search
technique as in [23]: it iteratively moves in the neighbor
solutions until a local optimum is reached. A speed-up method
is used to reduce the computational time needed for searching.
The steps in the referenced local search are described in the
following:

Procedure Referenced local search(Π,Πref)

 Stage 1: While (Π is improved)\
 For i=1 To N Do

• Let Π’= Π

• Find the job πref
i in Π’, and remove it.

• Test πref
i in all the possible slots of Π’.

• Insert πref
i in the slot resulting the lowest objective

value.

• If O(Π’)<O(Π) Then Π= Π’.
End For
Stage 2: Return the sequence Π
End Referenced local search

B. Employed bee phase

Now, having assigned randomly initial solutions to PS
employed bees, candidate solutions are to be explored based
on the path relinking approach [10]. In this paper, the path
relinking starts from an incumbent solution to be enhanced
and stops when there is no other possible movements to reach
the target solution. A solution is initial if Φ>=0, else it is a
target. Besides, if no intermediate solutions exist then the
current solution is kept and so not improved. A numerical
example is explained in Fig. 1 where Πs is the origin, Πd the
destination solution, and Πi are the intermediate solutions.

Fig. 1 An example using the path relinking technique

A When a new solution is found for an employed bee, and
its fitness value is better refined than that of the incumbent
solution, then the employed bee memorizes the new position
and reset its trial counter; else the parameter triali of the
incumbent solution is incremented by one.

C. Onlooker bee phase

International Journal of Scientific Research & Engineering Technology (IJSET)
ISSN: 2356-5608, Vol.3, issue 3
Copyright IPCO-2015-pp.30-36

To improve once more the quality of the colony, each
onlooker bee selects a solution of an employed bee and tries to
modify it. This selection is performed using the roulette wheel
selection operator. Besides, the referenced local search based
on the speed-up method is used again to explore neighboring
solutions for each onlooker bee. The referenced sequence is
randomly chosen. If the new explored solution is better, then
the incumbent one is erased and the new explored solution by
the local search technique becomes a new individual in the
colony. Else, its trial is incremented by one.

D. Scout bee phase

The scout bee phase is evoked to replace if exists the
discarded solution by the employed or onlooker bee during the
last $Limit$ number of trials, and generates new one by
applying the insertion-based local search [8] to the best
solution in the colony. This technique receives a permutation
as input and then tries to explore all possible permutations
those obtained by inserting jobs in different positions from
their original places. There is exactly one scout bee that
produces at most one solution at iteration of the search process.
After completing the three main phases of the ABC algorithm,
the population is cleaned by identifying redundant solutions
that will be replaced with randomly generated solutions.

E. Final BABC algorithm

 The complete Blocking ABC algorithm (BABC) runs in
three basic steps: Initialization, position updating and
termination, and has the following scheme:

Algorithm BABC

• Stage 1: Initialization:
1) Set the parameters: SN, PS, Limit, and

MCN.
2) Generate the initial population: apply the

PF-NEH(x) heuristic to produce 'x' initial
solutions, the rest are generated randomly.
Set triali= 0, i:1,2,...,SN

3) Test the population: calculate the objective
function value O(Π) for each solution
(fitness), then store the best-solution.

• Stage 2: Iterative process

cycle=1; Repeat

 Employed Bees phase
 For i = 1,2,. . . ,PS Repeat

1) Produce a new solution Π*i for the ith
employed bee who is associated with the
solution Πi using the path relinking
procedure;

2) Evaluate the new solution Π*i: If Π*i is
better than or equal to Πi, then set Πi = Π*i;

3) If Πi has not been improved, then Increment
its trial by 1

Onlooker Bees phase
For i = 1,2,. . . ,PS Repeat

1) Select a solution Πi for the ith onlooker bee

using the roulette wheel selection;
2) Generate a new solution Π*i for the ith

onlooker bee using the referenced local
search;

3) Evaluate the new solution Π*i: If Π*i is
better than or equal to Πi, then Set Πi = Π*i;

4) If Πi has not been improved, then Increment
its trial by 1

Scout bee phase
1) Pick the abandoned solution, if exists,
during the last limit number of trails: Define i
as the solution Πi with the maximum trial;

2) Replace Πi based on the best solution on
the population by applying the insertion-based
local search, and Set its trial to 0;

Overlapping solutions
1) Search for redundant solutions, and replace
them based on randomly generated one;

• Memorize the best solution achieved so far;
Cycle = Cycle + 1; Until cycle = MCN

• Return the best solution found so far;

IV. COMPUTATIONAL RESULTS

To test the performance of the proposed algorithm,
comprehensive experimental evaluations are presented based
on the well-known flow shop benchmark set of Taillard. The
benchmark set is composed of 12 subsets of given problems
with the size ranging from 20 jobs and 5 machines to 500 jobs
and 20 machines, and each subset consists of 10 instances. We
treat them as the blocking flow shop scheduling problems
with makespan and total flow time criterion. To deal with the
total tardiness criterion, we consider test problems generated
by Ronconi and Henriques [32]. There are five groups of job
sizes: 20, 50, 100, 200, and 500. In each job subset
(20,50,100), they have 5, 10, and 20 machines to process the
jobs, respectively. The job subset (200) has 10 and 20
machines, and the job subset (500) has only 20 machines to
process the jobs. Ten different matrices of processing times
were generated for each of the 12 sizes. For each of those
matrices, four scenarios were built. The scenarios represent
different configurations for the due dates [32]. Each instance
is independently executed ten replications, and in each
replication the relative percentage deviation (RPD) is
computed as follows:

Where, SolA defines the value of the objective function

reached by the BABC algorithm; and SolMin defines the
minimum objective value obtained among all the compared
algorithms. We can see that the smaller the RPD is the better
result the algorithm produces. The BABC algorithm is coded
in Visual C++ and run on an Intel Pentium IV 2.4 GHz PC
with 512 MB of memory.

On the basis of a set of preliminary experiments, best
results were achieved using the following parameters:

International Journal of Scientific Research & Engineering Technology (IJSET)
ISSN: 2356-5608, Vol.3, issue 3
Copyright IPCO-2015-pp.30-36

TABLE I
 PARAMETER VALUES USED FOR THE BLOCKING ALGORITHMS AFTER

CALIBRATION

Parameter MCN PS SN Limit
Value 100 50 50 5

A. Comparison of Taillard's benchmarks

Table II summarizes the results of the comparison of the
algorithms under the makespan criterion. The effectiveness of
the reported method against the [22], DPSO [37], DABC [8],
IG [27], HDDE [34], and the RAIS [19] was measured by
listing the ARPDs values, where SolMin defines the best-
known solution provided by [27]. Note that in the DABC
paper [8], the author did not report the results on the larger
instances.

TABLE II
 ARPD ON TAILLARD INSTANCES FOR EACH ALGORITHM UNDER THE

MAKESPAN CRITERION

Inst RAIS MA IG DPSO HDDE DABC BABC

20*5 0,000% 0,000% 0,000% 0,000% 0,000% 0,000% 0,000%

20*10 0,000% 0,000% 0,000% 0,011% 0,000% 0,000% 0,000%

20*20 0,000% 0,000% 0,000% 0,000% 0,000% 0,000% 0,000%

50*5 -0,192% -0,083% 0,000% 1,075% 0,779% -0,202% -0,226%

50*10 -0,197% -0,202% 0,000% 1,255% 0,532% -0,335% -0,329%

50*20 -0,004% -0,220% 0,000% 1,294% 0,351% -0,278% -0,211%

100*5 -0,818% -0,360% 0,000% 1,348% 1,778% -0,051% -0,842%

100*10 -0,882% -0,699% 0,000% 1,522% 1,013% -0,877% -0,930%

100*20 -0,712% -0,709% 0,000% 1,843% 0,858% -1,142% -0,883%

200*10 -0,329% -0,565% 0,000% 2,942% 2,494% 0,000% -0,595%

200*20 -0,629% -1,488% 0,000% 1,830% 1,240% 0,000% -1,136%

500*20 -0,015% -2,388% 0,000% 2,726% 1,538% 0,000% -2,694%

Average -0,315% -0,559% 0,000% 1,321% 0,882% -0,240% -0,654%

The above table reveals that MA, DPSO, DABC, IG,

HDDE, and RAIS are significantly outperformed by our
algorithm for middle or large-scale instance sizes. For the
small-scale instance sizes, the proposed algorithm obtains
similar results with the compared ones. The total ARPD for all
the 120 instances concerning the BABC algorithm is -0,654%.
Whereas, for MA, DPSO, DABC, IG, HDDE, and RAIS the
values are -0,559%, 1,321%, -0,240%, 0,000%, 0,882%, and -
0,315%, respectively. DPSO is the worst algorithm with the
largest overall RPD value. The negative average RPD values
indicate an enhancement to the best-known solution reported
in the literature: these improvements occur in all Taillard's

instances from (50×5) to (500×20) test sets.
Besides, Table III summarizes the results of the comparison

of the algorithms under the total flowtime criterion. The
effectiveness of the reported method against the hmghs [35],
hDABC [14], and the IG [17] was measured by listing again
the ARPDs values, where SolMin defines the best-known
solution reported by [35].

TABLE III
 ARPD ON TAILLARD INSTANCES FOR EACH ALGORITHM UNDER THE TOTAL

FLOWTIME CRITERION

Inst hmghs IG Hdabc BABC

20*5 0,00% 0,00% 0,00% 0,00%

20*10 0,00% 0,00% 0,00% 0,00%

20*20 0,00% 0,00% 0,01% -0,13%

50*5 0,00% -0,99% -0,20% -1,58%

50*10 0,00% -0,59% -0,26% -1,19%

50*20 0,00% -0,27% -0,11% -1,22%

100*5 0,00% -2,97% -0,69% -4,26%

100*10 0,00% -1,81% -0,30% -4,06%

100*20 0,00% -1,46% -0,44% -3,54%

200*10 0,00% -2,50% -0,79% -4,33%

200*20 0,00% -1,48% -0,62% -4,13%

500*20 0,00% -1,98% -1,26% -2,84%

Average 0,00% -1,17% -0,39% -2,27%

As we can see, the above table reveals that hmgHS,

hDABC, and IG are significantly outperformed by the
proposed algorithm. The total ARPD for all the 120 instances
concerning the BABC is -2,274%. Whereas, for hmgHS,
hDABC, and IG the values are: 0,000%, -0,389%, and -
1,171%, respectively.

B. Comparison of Ronconi and Henriques's benchmarks

Table IV summarizes the results of the comparison of the
algorithm under the total tardiness criterion. The effectiveness
of the reported method against the GRASP metaheuristic [32]
and the GA based on the path relinking technique GA_PR [7]
was measured by listing again the ARPDs values, where
SolMin defines the total tardiness value obtained by GRASP
algorithm.

Based on the above table, the BABC algorithm obtained
the same results as the GRASP in 53 problems. These
performances are much better than those obtained by GAPR
(124 problems). We report the average of improvement
percentage of each class with 10 problems. The BABC
achieved the highest improvement for test instances with N*M

=200×10 (-22,833%) and N*M =500×20 (-29,064%). The
lowest values of improvement of the algorithms were for

problems with N*M =20×20 (-1,144%). An overall average
improvement of -9,563% was achieved.

These conclusions clearly show that the proposed algorithm
provide better results than the compared algorithm for all
problem sizes.

TABLE IV
 ARPD ON RONCONI AND HENRIQUE’S INSTANCES FOR EACH

ALGORITHM UNDER THE TOTAL FLOWTIME CRITERION

International Journal of Scientific Research & Engineering Technology (IJSET)
ISSN: 2356-5608, Vol.3, issue 3
Copyright IPCO-2015-pp.30-36

Inst

GA_PR BABC GA_PR BABC GA_PR BABC GA_PR BABC GA_PR BABC

20*5 -3,774\% -6,293\% -1,166\% -1,781\% -1,969\% -2,688\% -1,625\% -2,179\% -2,134\% -3,236\%

20*10 -1,175\% -2,257\% -2,404\% -1,92\% -1,436\% -1,871\% -1,347\% -1,843\% -1,590\% -2,291\%

20*20 -1,576\% -1,979\% -0,544\% -0,884\% -0,486\% -0,652\% -0,74\% -0,994\% -0,837\% -1,127\%

50*5 -9,437\% -13,291\% 0\% -2,09\% -4,014\% -5,045\% -3,138\% -3,962\% -4,147\% -6,097\%

50*10 -8,372\% -13,133\% -10,517\% -16,966\% -3,169\% -4,507\% -1,701\% -4,194\% -5,940\% -9,700\%

50*20 -2,958\% -7,003\% -2,347\% -4,992\% -2,128\% -3,151\% -1,531\% -2,414\% -2,241\% -4,390\%

100*5 -11,033\% -15,113\% -4,449\% -4,776\% -0,573\% -2,075\% -0,628\% -4,409\% -4,171\% -6,593\%

100*10 -6,606\% -10,407\% 25,378\% 6,854\% -2,268\% -3,349\% -3,45\% -4,738\% 3,263\% -2,910\%

100*20 -4,477\% -11,632\% -11,545\% -25,299\% -1,144\% -3,135\% -0,727\% -2,572\% -4,548\% -10,660\%

200*10 -5,616\% -15,284\% -57,059\% -58,357\% -1,154\% -7,768\% -1,516\% -9,914\% -16,336\% -22,831\%

200*20 -4,964\% -15,918\% -10,747\% -29,556\% -2,383\% -8,29\% -2,034\% -7,308\% -5,032\% -15,268\%

500*20 -6,255\% -20,189\% -30,471\% -54,02\% -2,46\% -16,132\% -3,594\% -25,91\% -10,695\% -29,063\%

Average -5,52\% -11,042\% -8,823\% -16,255\% -1,957\% -4,889\% -1,836\% -5,870\% -4,534\% -9,514\%

Scenario 1 Scenario 2 Scenario 3 Scenario 4 All Scenario

V. CONCLUSION

In this paper we have proposed an ABC algorithm (BABC)
for the blocking permutation flow shop scheduling problem
under regular objectives. Hybridized with local search
technique, we sketch new schemes for the employed, onlooker,
and scout bee phases. Computational results attest that BABC
algorithm is very competitive when compared with leading
algorithms. Improvements occur in all Taillard's instances

from (50×5) to (500×20) test sets under makespan and total
flow time criteria. An overall average improvement of -
9,563% was achieved for the blocking problem under
tardiness criterion.

REFERENCES

[1] I.N.K. Abadi, N.G. Hall, and C. Sriskandarajah, Minimizing cycle time
in a blocking flowshop, Operations Research 1 (2000), 177–80.

[2] V.A. Armentano and D.P. Ronconi, Tabu search for total tardiness
minimization in flowshop scheduling problems, Computers and
Operations Research 26 3 (1999), 219–235.

[3] V.A Armentano and D.P. Ronconi, Minimizac¸ ˆao do tempo total
de atrasono problema de flowshop com buffer zero atrav´es de busca
tabu, Gestao and Produc¸ao 7 3 (2000), 352–363.

[4] K.R. Baker and J.W.M. Bertrand, An investigation of due date
assignment rules with constrained tightness, J. Oper. Manage 3
(1981), 109–120.

[5] V. Caraffa, S. Ianes, TP. Bagchi, and C. Sriskandarajah, Minimizing
makespan in a flowshop using genetic algorithms, International
Journal of Production Economics 2 (2001), 101–15.

[6] D. Davendra, M. Bialic-Davendra, R. Senkerik, and M. Pluhacek,
Scheduling the flow shop with blocking problem with the chaos-
induced discrete self organising migrating algorithm, Proceedings
27th European Conference on Modelling and Simulation (2013).

[7] Tiago de O. Januario, Jos Elias C. Arroyo, and Mayron Csar O.
Moreira, Nature inspired cooperative strategies for optimization (nicso
2008), Springer Berlin Heidelberg, 2009.

[8] G. Deng, Z. XU, and X. Gu, A discrete artificial bee colony
algorithm for minimizing the total flow time in the blocking flow shop
scheduling, Chinese Journal of Chemical Engineering 20 (2012),
1067–1073.

[9] P.C. Gilmore and R.E. Gomory, Sequencing a one state variable
machine: a solvable case of the traveling salesman problem,
Operations Research 5 (1964), 655–79.

[10] F. Glover and M. Laguna, Tabu search, Kluwer Academic Publishers,
Boston (1997).

[11] J. Grabowski. and J. Pempera, The permutation flowshop problem
with blocking. a tabu search approach, Omega 3 (2007), 302–11.

[12] R.L. Graham, E.L. Lawler, J.K. Lenstra, and Kan.A.H.G. Rinnooy,
Optimization and approximation in deterministic sequencing and
scheduling: a survey, Annals of Discrete Mathematics 5 (1979), 287–
362.

[13] N.G. Hall and C. Sriskandarajah, A survey of machine scheduling
problems with blocking and no-wait in process, Operations
Research 44 (1996), 510–25.

[14] Yu-Yan Han, J.J. Liang, Quan-Ke Pan, Jun-Qing Li, Hong-Yan Sang,
and N.N. Cao, Effective hybrid discrete artificial bee colony
algorithms for the total flowtime minimization in the blocking
flowshop problem, Int J Adv Manuf Technol 67 (2013), 397–414.

[15] S.M. Johnson, Optimal two- and three-stage production schedules
with setup time included, Naval Research Logistics Quarterly 1
(1954), 61–8.

[16] D. Karaboga, An idea based on honeybee swarm for numerical
optimization, Technical Report TR06, Erciyes University, Engineering
Faculty, Computer Engineering Department (2005).

[17] D. Khorasanian and G. Moslehi, An iterated greedy algorithm for
solving the blocking flow shop scheduling problem with total flow
time criteria, International Journal of Industrial Engineering and
Production Research 23 (2012), 301–308.

[18] C. Koulamas, The total tardiness problem: Review and extensions,
Operations Research 42 (1994), 1025–1041.

[19] S.W. Lin and K.C. Ying, Minimizing makespan in a blocking
flowshop using a revised artificial immune system algorithm, Omega
41 (2013), 383–389.

[20] S.T. McCormick, M.L. Pinedo, S. Shenker, and B. Wolf, Sequencing
in an assembly line with blocking to minimize cycle time, Operations
Research 37 (1989), 925–935.

[21] M. Nawaz, Jr.E.E. Enscore, and I. Ham, A heuristic algorithm for the
m-machine, n-job flow-shop sequencing problem, Omega 11 (1983),
91–95.

[22] Q. Pan, L. Wang, H. Sang, J. Li, and M. Liu, A high performing
memetic algorithm for the flowshop scheduling problem with blocking,
IEEE Transactions on Automation Science and Engineering 10 (2013),
741–756.

[23] Q.K. Pan and L. Wang, Effective heuristics for the blocking
flowshop scheduling problem with makespan minimization, Omega 2
(2012), 218–29.

[24] M. Pinedo, Scheduling: theory, algorithms, and systems, Pretice
Hall. U.A.S (2008).

[25] B. Qian, L. Wang, D.X. Huang, W.L. Wang, and X. Wang, An
effective hybrid de-based algorithm for multi-objective flowshop
scheduling with limited buffers, Computers and Operations Research
1 (2009), 209–3.

[26] S.S. Reddi and C.V. Ramamoorthy, On the flow-shop sequencing
problem with no wait in process, Operational Research Quarterly 3
(1972), 323–31.

[27] I. Ribas, R. Companys, and X. Tort-Martorell, An iterated greedy
algorithm for the flowhsop scheduling problem with blocking, Omega
3 (2011), 293–301.

[28] Imma Ribas, Ramon Companys, and Xavier Tort-Martorell, An
efficient iterated local search algorithm for the total tardiness blocking
flow shop problem, International Journal of Production Research 51
(2013), 5238–5252.

[29] H. Rock, Some new results in flow shop scheduling, Zeitschrift fur
Operations Research 28 (1984), 1–16.

[30] D.P. Ronconi, A note on constructive heuristics for the flowshop
problem with blocking, International Journal of Production Economics
87 (2004), 39–48.

[31] D.P Ronconi, A branch-and-bound algorithm to minimize the
makespan in a flowshop problem with blocking, Annals of
Operations Research 1 (2005), 53–65.

International Journal of Scientific Research & Engineering Technology (IJSET)
ISSN: 2356-5608, Vol.3, issue 3
Copyright IPCO-2015-pp.30-36

[32] D.P. Ronconi and L.R.S. Henriques, Some heuristic algorithms for
total tardiness minimization in a flowshop with blocking, Omega 2
(2009), 272–81.

[33] M.F. Tasgetiren, Q.K. Pan, P.N. Suganthan, and A.H.L. Chen, A
discrete artificial bee colony algorithm for the total flow time
minimization in permutation flow shops, Inform. Sci. 16 (2011),
3459–3475.

[34] L. Wang, Q.K. Pan, P.N. Suganthan, W.H. Wang, and Y.M. Wang, A
novel hybrid discrete differential evolution algorithm for blocking
flowshop scheduling problems, Computers and Operational
Research 3 (2010), 509–20.

[35] L. Wang, Q.K. Pan, and M.F. Tasgetiren, Minimizing the total flow
time in a flowshop with blocking by using hybrid harmony search
algorithms, Expert Syst. Appl 12 (2010), 7929–7936.

[36] L. Wang., Q.K. Pan, and M.F. Tasgetiren, A hybrid harmony search
algorithm for the blocking permutation flowshop scheduling problem,
Comput. Ind. Eng. 1 (2011), 76–83.

[37] X. Wang and L. Tang, A discrete particle swarm optimization
algorithm with self-adaptive diversity control for the permutation
flowshop problem with blocking, Applied Soft Computing 12 (2012),
652–662.

