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Abstract— In this paper, we expose a new meta-heuristic based 

on the artificial behavior of bee colony (ABC) for solving the 

blocking permutation flow shop scheduling problem (BFSP) 

subject to regular objectives. On three main steps, the proposed 

algorithm iteratively solved the BFSP under three fixed measure 

(makespan, total flowtime, or total tardiness criterion). Discrete 

job permutations and operators are used to represent and 

generate new solutions for the employed, the onlookers, and 

scout bees, respectively. The performance of this algorithm is 

tested on the well-known benchmark sets of Taillard, and 

Ronconi and Henriques. The computational results assert the 

effectiveness of this heuristic in comparison with some recently 

proposed state-of-the-art algorithms. So, new best known 

solutions for the benchmark sets are found for the considered 

problem. 
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I. INTRODUCTION 

The traditional permutation flow shop problem plays a 
primary role in the scheduling theory. It is one of the first 
machine scheduling models that has been explored since the 
publication of Johnson's paper for solving the two machine 
flow shop problem [15]. The issue is to specify a complete 
sequence of all jobs, the same for each machine that 
minimizes some criterion. The most studied optimization 
measure is the minimization of the makespan (Cmax) which 
defines the time at which the last job in the sequence is 
completed and leaves the system. This problem with 

makespan criterion is denoted as F|prmu|Cmax; using the α|β|γ 
notation of Graham et al. [12]. Various other scheduling 
features have been studied and analyzed in the literature: the 
total flow time, the maximum lateness, the maximum 
tardiness, the maximum earliness, and other similar criteria. 
All the above objective functions are so-called regular 
performance measures. A regular performance measure is a 
function that is non decreasing in {C1,C2,...,CN}: measure that 
is always improved by reducing job completion time. Anyway, 

it is commonly assumed whatever the objective that buffer 
storage capacity between machines is limitless. 

Now, if we imagine no intermediate buffer exists between 
machines, then the problem becomes a blocking permutation 
flow shop (BFSP) [32]. Since there are no buffers in the shop, 
a job has to stay on a machine until its next machine is free. 
This classical blocking situation is called 'Release when 
Starting Blocking (RSb)'. 

One of the pioneering works on this problem is [26] who 
showed that the F2|blocking|Cmax problem may be reduced to a 
special case of the traveling salesman problem which may be 
resolved in polynomial time using the famous Gilmore and 
Gomory algorithm [9]. For m>2 the problem is proved to be 
strongly NP-hard [13]. As well, the same problem with total 
flow time criteria and two machines is strongly NP-hard [29]. 
The two-machine flow shop tardiness case is also NP-hard 
[18]. 

Heuristic algorithms used in the literature may be broadly 
divided into constructive and improvement heuristics. 
Among the proposed constructive heuristics for the BFSP with 
makespan criterion, we may refer to the Profile Fitting (PF) 
[20] developed to deal with the assembly line scheduling 
problem; the far-famed NEH (Nawaz-Enscore-Ham) [21] 
originally presented for the traditional flow shop problem 
(made up of two phases: creation of the initial sequence of the 
jobs and the iterative insertion procedure); the minmax (MM), 
the combination of MM and NEH (MME), and the 
combination of PF and NEH (PFE) [30]. For the BFSP with 
total flow time criterion, we refer to the modified NEH 
heuristic called NEH-WPT [35] where the superiority of 
NEH-WPT over NEH is proved. In [32], a constructive 
heuristic and a GRASP-based heuristic are settled for the 
BFSP with total tardiness criterion. 

Regarding the improvement heuristics, we may refer to the 
heuristic used to minimize the cycle time in a blocking flow 
shop [1] which can also be employed to the BFSP under 
makespan criterion. As well, the Genetic Algorithm (GA) 
proposed in [5] to solve large size flow shop problems and 
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based on the slowing down restriction idea deals with the 
blocking problem as a special case. Subsequently, in [31] 
authors proposed (Ron) algorithm based on blocking-lower 
bound that out-performed algorithms presented in their earlier 
studies. In [11], a fast Tabu search (TS) and an improved TS 
algorithms (TS+M) based on multi-moves technique are 
exposed. Experimental results demonstrated that both of them 
are relatively more rapid and effective in finding better 
solutions than GA [5] and Ron [31]. More recently, the 
reference [34] proposed a Hybrid Discrete Differential 
Evolution (HDDE) algorithm for the Fm|blocking|Cmax. 
Computational results demonstrated that HDDE algorithm not 
only out performs TS and TS+M algorithms but also gets 
better results than the Hybrid Differential Evolution (HDE) 
algorithm [25]. We refer also to the reference [27] where an 
Iterated Greedy (IG) algorithm is proposed which makes use 
of the insertion method of the NEH heuristic. 

Meanwhile, in [35] a hybrid modified global-best Harmony 
Search (hmgHS) algorithm is proposed for solving the 
blocking problem with the total flow time criterion. Similarly, 
in [36] the hmgHS algorithm is submitted under the same 
problem and was proven its superiority over the IG [27]. Later, 
a Discrete Artificial Bee Colony algorithm (DABCD) is 
proposed [8] and compared with several other powerful 
algorithms, including DABC proposed in [33] (denoted by 
DABCT), HDDE, and the IG algorithm. Three other effective 
hybrid DABC algorithms are proposed in [14]. 

As well, by combining the respective advantages of 
Artificial Immune Systems (AIS) and the annealing process of 
Simulated Annealing (SA), an effective Revised AIS (RAIS) 
algorithm is proposed minimizing the makespan [19]. The 
computational results showed that the heuristic provide better 
performances than the leading approaches for all problem 
sizes. In [23], a three-phase algorithm for the Fm|blocking|Cmax 
is presented: higher efficiencies of the algorithm over the IG 
algorithm. In [37] a Discrete Particle Swarm Optimization 
algorithm with self-adaptive diversity control is proposed to 
solve the same problem. After that, a high performing 
Memetic Algorithm (MA) for the blocking problem 
minimizing makespan is appeared [22], where a constructive 
heuristic is presented (combining PF and NEH) and a memetic 
algorithm is proposed based on path-relinking based crossover 
and a referenced local search. At last, in [6], a chaos-induced 
discrete self organizing migrating algorithm is applied to the 
blocking problem and tested on the Taillard problem sets. 

Unlikely, there is a great work dedicated to developing both 
exact and heuristic algorithms for both makespan and total 
flow time criteria; it seems that little work has dealt with the 
total tardiness criterion until recently. 

In particular, using the LBNEH method suggested in [2], 
Armentano and Ronconi [3] proposed a Tabu Search 
procedure to obtain an initial solution for their heuristic. In 
[32], a new NEH-based method called (FPDNEH) and a 
Greedy Randomized Adaptive Search Procedure (GRASP) 
were proposed. As well, in reference [28] an efficient Iterated 
Local Search algorithm (ILS) coupled with a Variable 

Neighborhood Search (VNS) is exposed to minimize the 
tardiness measure. A rapid survey on flow shop with blocking 
and no-wait constraint in process can be found in [13]. 

In this work, a discrete algorithm based on the performance 
of foraging artificial bees colony is proposed to solve the 
BFSP under three regular objectives. We hybridize the 
algorithm with a local search technique and provide new 
schemes for the employed, onlookers, and scout bees phases. 
Computational experiments are done using the two well 
known Taillard and Ronconi and Henriques benchmark sets. 

Thus, the rest of this paper is organized as follows: In 
Section 2 we briefly introduce the BFSP problem. We 
describe in Section 3 our blocking algorithm. The experiments 
results are reported in the next section. Finally, in section 5, 
we present our concluding remarks. 

II. PROBLEM STATEMENT 

We consider the blocking problem to minimize separately, 
the makespan, the total flow time, and the total tardiness in the 
M-machine permutation flow shop environment. The problem 
can be defined as follows. At time 0, there are N independent 
jobs to be sequentially processed on M machines, having no 
intermediate buffers. All jobs follow the same route in the 
machines. Since there is no buffer between each successive 
pair of machines, intermediate queues of jobs waiting in the 
system for their next operation are not allowed. Therefore, a 
job cannot leave a machine until the next machine 
downstream is free. This blocking situation prevents 
processing of other jobs on the blocked machine. We call 
down the following assumptions to define the BFSP: 

• There is precisely one task corresponding to the 
processing of job i (i=1,2,...,N) on each machine j 
(j=1,2,...,M) which requires a processing time pij, and 
may have a given due date Di which is the time point at 
which the job should finish. 

• Each job may be processed on only one machine at any 
time, and each machine can process only one job at a 
time. 

• Jobs are ready for processing at the beginning and have 
no precedent constraints among them. Preemption is not 
allowed. 

Considering the above-mentioned assumptions, the 
objectives is to find out a sequence for processing all jobs on 
all machines so as to singly minimize the maximum 
completion time, the total flow time, and the total tardiness. 

We consider only schedules in which the jobs are processed 
in the same order on all machines (permutation schedules). 
According to the classifications mentioned in Graham et al. 
[12], the blocking instances considered in this study are as 

follows: Fm|block|Cmax, Fm|block|∑Cj, and Fm|block|∑Tj 
representing respectively the BFSP with makespan, total 
completion time, and total tardiness criteria. 

Let: Π:=(ᴨ1, ᴨ2,..., ᴨN) be a solution for the problem, where 
ᴨi denotes the ith job in the considered sequence; dᴨi,j 

(i=1,2,...,N; j=0,1,2,...,M) represents the departure time of job 
ᴨi on machine j, where dᴨi,0 denotes the time job ᴨi starts its 
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processing on the first machine. The corresponding values of 
makespan of Π may then be calculated in O(nm) as 
Cmax(Π)=CᴨN,M}(Π), where Cᴨi,M=dᴨi,M is the completion time 
of job ᴨi on machine M that can be calculated using the 
following expressions presented in [24]: 

 

 

 

 

 

 
Using again the above recursion, we may also calculate the 

total flow time (TFT) and the total tardiness (TT) as follows:  

TFT(Π) = ∑N
i=1(Cᴨi,M) and TT(Π) = ∑N

i=1(Ti) where Ti = 

max{0,(Cᴨi-Di)}. We choose to calculate the due dates Di 

following the Total Work Content (TWK) rule [4]: Di = 

τ*(∑M
j=1(pᴨi,j)). τ is the due date tightness factor and 

(∑M
j=1(pᴨi,j)) is the total processing time of job ᴨi on all 

machines. τ is taken in the range [1-3] to make the job's due 
date loose, medium or tight randomly. 

III. THE DISCRETE ARTIFICIAL BEE COLONY ALGORITHM FOR 

THE BFSP 

The ABC algorithm is a new swarm intelligence based 
approaches [16] originally designed for continuous function 
optimization. The artificial bees are sorted into three groups: 
employed, onlooker, and scout bees. The number of onlookers 
and employed bees corresponds to the number of food sources 
SN surrounding the hive. At the start, the algorithm generates 
randomly initial population of solutions, which are then 
randomly assigned to the employed bees and evaluated. Later, 
the population iterates the search processes of the employed, 
onlooker and scout bees. The employed or onlooker bee 
produces new solutions by modifying probabilistically their 
current solutions, and tests their fitness value. When all the 
employed bees end the search process, they share out 
information with the onlooker bees. The onlooker bee checks 
these information and picks a food source with a probability 
related to its nectar quantity. If a solution is not improved after 
a fixed number of Limit trials, that solution is neglected by its 
employed bee. 

In the following we describe all parameters and operators 
used in the proposed ABC for the BFSP under some fixed 
criterion. 

A. Population initialization 

We initialize the population which consists of a set of food 
sources. 'x' initial solutions are obtained using the PF-NEH(x) 
heuristic developed in [23]. So, while jobs are being arranged 
in an increasing order of the sum of their processing times at 
the first stage of the PF-NEH(x) algorithm, x solutions are 
produced iteratively where at each iteration of the algorithm 

the first ranked job is picked from the initial jobs ordering and 
then a finite solution is constructed based on both the PF 
method and the NEH's insertion-stage. Only the last λ jobs in 
the sequence produced by the PF method undergo the NEH's 
insertion-stage. The remaining (SN-x) members of the colony 
are randomly generated.  

Meanwhile, to improve the quality of the initial explored 
food sources, we perform the referenced local search 
technique as in [23]: it iteratively moves in the neighbor 
solutions until a local optimum is reached. A speed-up method 
is used to reduce the computational time needed for searching. 
The steps in the referenced local search are described in the 
following: 

 

Procedure Referenced local search(Π,Πref) 

 Stage 1: While (Π is improved)\ 
    For  i=1 To N Do 

• Let Π’= Π 

• Find the job πref
i in Π’, and remove it. 

• Test πref
i in all the possible slots of Π’. 

• Insert πref
i in the slot resulting the lowest objective 

value. 

• If O(Π’)<O(Π) Then Π= Π’. 
End For 
Stage 2: Return the sequence Π 
End Referenced local search 

 

B. Employed bee phase 

Now, having assigned randomly initial solutions to PS 
employed bees, candidate solutions are to be explored based 
on the path relinking approach [10]. In this paper, the path 
relinking starts from an incumbent solution to be enhanced 
and stops when there is no other possible movements to reach 
the target solution. A solution is initial if Φ>=0, else it is a 
target. Besides, if no intermediate solutions exist then the 
current solution is kept and so not improved. A numerical 
example is explained in Fig. 1 where Πs is the origin, Πd the 
destination solution, and Πi are the intermediate solutions. 

 

 

Fig. 1  An example using the path relinking technique 

A When a new solution is found for an employed bee, and 
its fitness value is better refined than that of the incumbent 
solution, then the employed bee memorizes the new position 
and reset its trial counter; else the parameter triali of the 
incumbent solution is incremented by one. 

C. Onlooker bee phase 
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To improve once more the quality of the colony, each 
onlooker bee selects a solution of an employed bee and tries to 
modify it. This selection is performed using the roulette wheel 
selection operator. Besides, the referenced local search based 
on the speed-up method is used again to explore neighboring 
solutions for each onlooker bee. The referenced sequence is 
randomly chosen. If the new explored solution is better, then 
the incumbent one is erased and the new explored solution by 
the local search technique becomes a new individual in the 
colony. Else, its trial is incremented by one. 

D. Scout bee phase 

The scout bee phase is evoked to replace if exists the 
discarded solution by the employed or onlooker bee during the 
last $Limit$ number of trials, and generates new one by 
applying the insertion-based local search [8] to the best 
solution in the colony. This technique receives a permutation 
as input and then tries to explore all possible permutations 
those obtained by inserting jobs in different positions from 
their original places. There is exactly one scout bee that 
produces at most one solution at iteration of the search process. 
After completing the three main phases of the ABC algorithm, 
the population is cleaned by identifying redundant solutions 
that will be replaced with randomly generated solutions. 

E. Final BABC algorithm  

 The complete Blocking ABC algorithm (BABC) runs in 
three basic steps: Initialization, position updating and 
termination, and has the following scheme:  

 

Algorithm BABC 

• Stage 1: Initialization: 
1)  Set the parameters: SN, PS, Limit, and 

MCN. 
2)  Generate the initial population: apply the 

PF-NEH(x) heuristic to produce 'x' initial 
solutions, the rest are generated randomly. 
Set  triali= 0, i:1,2,...,SN 

3)  Test the population: calculate the objective 
function value O(Π) for each solution 
(fitness), then store the best-solution. 

• Stage 2: Iterative process 

cycle=1; Repeat 

   Employed Bees phase  
      For i = 1,2,. . . ,PS Repeat 

1) Produce a new solution Π*i for the ith 
employed bee who is associated with the 
solution Πi using the path relinking 
procedure; 

2) Evaluate the new solution Π*i: If Π*i is 
better than or equal to Πi, then set Πi = Π*i; 

3) If Πi has not been improved, then Increment  
its trial by 1 

Onlooker Bees phase 
For i = 1,2,. . . ,PS Repeat 

1) Select a solution Πi for the ith onlooker bee 

using the roulette wheel selection; 
2) Generate a new solution Π*i for the ith 

onlooker bee using the referenced local 
search; 

3) Evaluate the new solution Π*i: If Π*i is 
better than or equal to Πi, then Set Πi = Π*i; 

4) If Πi has not been improved, then Increment  
its trial by 1 

Scout bee phase 
1) Pick the abandoned solution, if exists, 
during the last limit number of trails: Define i 
as the solution Πi with the maximum trial; 

2)   Replace Πi based on the best solution on 
the population by applying the insertion-based 
local search, and Set its trial to 0; 

Overlapping solutions 
1) Search for redundant solutions, and replace 
them based on randomly generated one; 

• Memorize the best solution achieved so far; 
Cycle = Cycle + 1; Until cycle = MCN 

• Return the best solution found so far; 

IV. COMPUTATIONAL RESULTS 

To test the performance of the proposed algorithm, 
comprehensive experimental evaluations are presented based 
on the well-known flow shop benchmark set of Taillard. The 
benchmark set is composed of 12 subsets of given problems 
with the size ranging from 20 jobs and 5 machines to 500 jobs 
and 20 machines, and each subset consists of 10 instances. We 
treat them as the blocking flow shop scheduling problems 
with makespan and total flow time criterion. To deal with the 
total tardiness criterion, we consider test problems generated 
by Ronconi and Henriques [32]. There are five groups of job 
sizes: 20, 50, 100, 200, and 500. In each job subset 
(20,50,100), they have 5, 10, and 20 machines to process the 
jobs, respectively. The job subset (200) has 10 and 20 
machines, and the job subset (500) has only 20 machines to 
process the jobs. Ten different matrices of processing times 
were generated for each of the 12 sizes. For each of those 
matrices, four scenarios were built. The scenarios represent 
different configurations for the due dates [32]. Each instance 
is independently executed ten replications, and in each 
replication the relative percentage deviation (RPD) is 
computed as follows: 

 
Where, SolA defines the value of the objective function 

reached by the BABC algorithm; and SolMin defines the 
minimum objective value obtained among all the compared 
algorithms. We can see that the smaller the RPD is the better 
result the algorithm produces. The BABC algorithm is coded 
in Visual C++ and run on an Intel Pentium IV 2.4 GHz PC 
with 512 MB of memory. 

On the basis of a set of preliminary experiments, best 
results were achieved using the following parameters: 
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TABLE I 
 PARAMETER VALUES USED FOR THE BLOCKING ALGORITHMS AFTER 

CALIBRATION 

Parameter MCN PS SN Limit 
Value 100 50 50 5 

A.  Comparison of Taillard's benchmarks 

Table II summarizes the results of the comparison of the 
algorithms under the makespan criterion. The effectiveness of 
the reported method against the [22], DPSO [37], DABC [8], 
IG [27], HDDE [34], and the RAIS [19] was measured by 
listing the ARPDs values, where SolMin defines the best-
known solution provided by [27]. Note that in the DABC 
paper [8], the author did not report the results on the larger 
instances. 

TABLE II 
 ARPD ON TAILLARD INSTANCES FOR EACH ALGORITHM UNDER THE 

MAKESPAN CRITERION 

Inst RAIS MA IG DPSO HDDE DABC BABC 

20*5 0,000% 0,000% 0,000% 0,000% 0,000% 0,000% 0,000% 

20*10 0,000% 0,000% 0,000% 0,011% 0,000% 0,000% 0,000% 

20*20 0,000% 0,000% 0,000% 0,000% 0,000% 0,000% 0,000% 

50*5 -0,192% -0,083% 0,000% 1,075% 0,779% -0,202% -0,226% 

50*10 -0,197% -0,202% 0,000% 1,255% 0,532% -0,335% -0,329% 

50*20 -0,004% -0,220% 0,000% 1,294% 0,351% -0,278% -0,211% 

100*5 -0,818% -0,360% 0,000% 1,348% 1,778% -0,051% -0,842% 

100*10 -0,882% -0,699% 0,000% 1,522% 1,013% -0,877% -0,930% 

100*20 -0,712% -0,709% 0,000% 1,843% 0,858% -1,142% -0,883% 

200*10 -0,329% -0,565% 0,000% 2,942% 2,494% 0,000% -0,595% 

200*20 -0,629% -1,488% 0,000% 1,830% 1,240% 0,000% -1,136% 

500*20 -0,015% -2,388% 0,000% 2,726% 1,538% 0,000% -2,694% 

Average -0,315% -0,559% 0,000% 1,321% 0,882% -0,240% -0,654% 

 
The above table reveals that MA, DPSO, DABC, IG, 

HDDE, and RAIS are significantly outperformed by our 
algorithm for middle or large-scale instance sizes. For the 
small-scale instance sizes, the proposed algorithm obtains 
similar results with the compared ones. The total ARPD for all 
the 120 instances concerning the BABC algorithm is -0,654%. 
Whereas, for MA, DPSO, DABC, IG, HDDE, and RAIS the 
values are -0,559%, 1,321%, -0,240%, 0,000%, 0,882%, and -
0,315%, respectively. DPSO is the worst algorithm with the 
largest overall RPD value. The negative average RPD values 
indicate an enhancement to the best-known solution reported 
in the literature: these improvements occur in all Taillard's 

instances from (50×5) to (500×20) test sets. 
Besides, Table III summarizes the results of the comparison 

of the algorithms under the total flowtime criterion. The 
effectiveness of the reported method against the hmghs [35], 
hDABC [14], and the IG [17] was measured by listing again 
the ARPDs values, where SolMin defines the best-known 
solution reported by [35]. 

TABLE III 
 ARPD ON TAILLARD INSTANCES FOR EACH ALGORITHM UNDER THE TOTAL 

FLOWTIME CRITERION 

Inst hmghs IG Hdabc BABC 

20*5 0,00% 0,00% 0,00% 0,00% 

20*10 0,00% 0,00% 0,00% 0,00% 

20*20 0,00% 0,00% 0,01% -0,13% 

50*5 0,00% -0,99% -0,20% -1,58% 

50*10 0,00% -0,59% -0,26% -1,19% 

50*20 0,00% -0,27% -0,11% -1,22% 

100*5 0,00% -2,97% -0,69% -4,26% 

100*10 0,00% -1,81% -0,30% -4,06% 

100*20 0,00% -1,46% -0,44% -3,54% 

200*10 0,00% -2,50% -0,79% -4,33% 

200*20 0,00% -1,48% -0,62% -4,13% 

500*20 0,00% -1,98% -1,26% -2,84% 

Average 0,00% -1,17% -0,39% -2,27% 

 
As we can see, the above table reveals that hmgHS, 

hDABC, and IG are significantly outperformed by the 
proposed algorithm. The total ARPD for all the 120 instances 
concerning the BABC is -2,274%. Whereas, for hmgHS, 
hDABC, and IG the values are: 0,000%, -0,389%, and -
1,171%, respectively. 

B. Comparison of Ronconi and Henriques's benchmarks 

Table IV summarizes the results of the comparison of the 
algorithm under the total tardiness criterion. The effectiveness 
of the reported method against the GRASP metaheuristic [32] 
and the GA based on the path relinking technique GA\_PR [7] 
was measured by listing again the ARPDs values, where 
SolMin defines the total tardiness value obtained by GRASP 
algorithm. 

Based on the above table, the BABC algorithm obtained 
the same results as the GRASP in 53 problems. These 
performances are much better than those obtained by GAPR 
(124 problems). We report the average of improvement 
percentage of each class with 10 problems. The BABC 
achieved the highest improvement for test instances with N*M 

=200×10 (-22,833%) and N*M =500×20 (-29,064%). The 
lowest values of improvement of the algorithms were for 

problems with N*M =20×20 (-1,144%). An overall average 
improvement of -9,563% was achieved. 

These conclusions clearly show that the proposed algorithm 
provide better results than the compared algorithm for all 
problem sizes. 

TABLE IV 
 ARPD ON RONCONI AND HENRIQUE’S INSTANCES FOR EACH 

ALGORITHM UNDER THE TOTAL FLOWTIME CRITERION 
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Inst

GA_PR BABC GA_PR BABC GA_PR BABC GA_PR BABC GA_PR BABC

20*5 -3,774\% -6,293\% -1,166\% -1,781\% -1,969\% -2,688\% -1,625\% -2,179\% -2,134\% -3,236\%

20*10 -1,175\% -2,257\% -2,404\% -1,92\% -1,436\% -1,871\% -1,347\% -1,843\% -1,590\% -2,291\%

20*20 -1,576\% -1,979\% -0,544\% -0,884\% -0,486\% -0,652\% -0,74\% -0,994\% -0,837\% -1,127\%

50*5 -9,437\% -13,291\% 0\% -2,09\% -4,014\% -5,045\% -3,138\% -3,962\% -4,147\% -6,097\%

50*10 -8,372\% -13,133\% -10,517\% -16,966\% -3,169\% -4,507\% -1,701\% -4,194\% -5,940\% -9,700\%

50*20 -2,958\% -7,003\% -2,347\% -4,992\% -2,128\% -3,151\% -1,531\% -2,414\% -2,241\% -4,390\%

100*5 -11,033\% -15,113\% -4,449\% -4,776\% -0,573\% -2,075\% -0,628\% -4,409\% -4,171\% -6,593\%

100*10 -6,606\% -10,407\% 25,378\% 6,854\% -2,268\% -3,349\% -3,45\% -4,738\% 3,263\% -2,910\%

100*20 -4,477\% -11,632\% -11,545\% -25,299\% -1,144\% -3,135\% -0,727\% -2,572\% -4,548\% -10,660\%

200*10 -5,616\% -15,284\% -57,059\% -58,357\% -1,154\% -7,768\% -1,516\% -9,914\% -16,336\% -22,831\%

200*20 -4,964\% -15,918\% -10,747\% -29,556\% -2,383\% -8,29\% -2,034\% -7,308\% -5,032\% -15,268\%

500*20 -6,255\% -20,189\% -30,471\% -54,02\% -2,46\% -16,132\% -3,594\% -25,91\% -10,695\% -29,063\%

Average -5,52\% -11,042\% -8,823\% -16,255\% -1,957\% -4,889\% -1,836\% -5,870\% -4,534\% -9,514\%

Scenario 1 Scenario 2 Scenario 3 Scenario 4 All Scenario

 
 

V. CONCLUSION 

In this paper we have proposed an ABC algorithm (BABC) 
for the blocking permutation flow shop scheduling problem 
under regular objectives. Hybridized with local search 
technique, we sketch new schemes for the employed, onlooker, 
and scout bee phases. Computational results attest that BABC 
algorithm is very competitive when compared with leading 
algorithms. Improvements occur in all Taillard's instances 

from (50×5) to (500×20) test sets under makespan and total 
flow time criteria. An overall average improvement of -
9,563% was achieved for the blocking problem under 
tardiness criterion. 
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