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Abstract— This paper deals with the modeling of the diffusive 

systems using fractional order transfer functions. We present two 

models able to modeling diffusive behavior. The first one is based 

on temporal approach and the second one is obtained using a 

non-integer integrator operator where the fractional behavior 

acts only over a limited frequency band. The diffusive system to 

be modeled is a thermal test bench of an aluminum heated bar at 

one extremity. A comparative study was presented to show the 

practically usefulness of the two proposed models and 

comparative remarks are given. 
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I. INTRODUCTION 

Non-integer order systems, that characterize diffusive 
interface, have been introduced long ago in various fields of 
science, like physics, mechanic, electricity, chemistry, 
biology, economy [1,2,3 and 4]. A well-known example is the 
case of heat transfer [5,6 and 7], such system obeys to 
diffusion phenomenon where the flux and the temperature are 
interrelated through non-integer order operators.  

 
The objective of this paper is to analyse the 

behaviour of a diffusive interface, and develop tow fractional 
order models describing heat transfer phenomena through the 
aluminum bar using this analysis. The first model is based on 
temporal approach and the second one relies on frational 
operator proposed by Trigeassou [8]. Then, proposed models 
will be compared to the real response thanks to an 
experimental thermal system to show the practically 
usefulness of the two proposed models. Comparative 
discussion was also elaborated. 

 
This paper is organized as follows: in Section 2, the 

experimental thermal system is presented briefly; third section 
is dedicated to introduce the fundamental equations governing 
the heat diffusion and we will show that when the heating 
temperature generated by a heat flux source, we can define 
fractional impedance. Section 4 provides a two way to 
modeling heat transfer the first one is dependent on temporal 
approach and the second is relied on fractional integrator 
introduced par Trigeassou [8]. In section 5, proposed models 

are finally tested on an experimental thermal system and we 
conclude this paper with and some comparison remarks. 

 

II. EXPERIMENTAL THERMAL SYSTEM 

The thermal test bench consists, as shown in Fig.1, of 
1cm radius and 41cm length cylindrical bar of aluminum, 
under a heating resistance thermally isolated with foam that 
ensures a unidirectional transfer of the heating flow. The 
thermal system is considered as a semi-infinite dimension due 
to its important length compared with its section. 

The input signal of the system is a thermal flow, generated 
from a heating resistance fixed at the extremity of the bar, 
commanded by a computer and the output is the temperature 
of the bar measured at a distance d of the heated surface. The 
thermal flow is controlled by a computer equipped with a PCI-
DAS1002 input-output card.  

The bar temperature is measured with the temperature 
sensor LM35DZ. 

 

 
 

Fig.1 . The thermal system 

III. PROBLEMATIC 

The evolution of temperature in a metallic bar of 
length L, section S, conductivity λ and of a density ρ, solicited 
by a heat flow J(x,t) on the face x=0 is expressed by the 
equation of the heat Eq. 1 and generality of the Fick law Eq. 2. 
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D is the coefficient of thermal diffusivity defined by Eq. 3: 

D
c

λ

ρ
=

    (3) 
where: c is the specific heat. 

 
By supposing that initial condition are equal to zero 

and by applying the Laplace transform in the time domain to 
Eq.1, we can obtain the following relation. 
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The general solution of Eq.4 has the following form: 
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The two terms C1(p) and C2(p) can be determined from the 
limit conditions (J (L, p) et  J (0, p)). 
Respecting the limit conditions, we can get the expression of 
the section impedance viewed from the input face (x=0): 
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Case of important limits in practice:  

 
• Short section L →0  
If we perform a limited development to Eq.6, we can 

redefine the impedance Eq. 7. 
1

( )
th

Z p
C p

=

   (7) 
With Cth the total thermal capacity of the section defined by: 

th
C S cLρ=

 
 
This limited development is the same for a given L at 

low frequency which means that if the system is excited with a 
sinusoidal signal of a low frequency, the bar with a finite 
length, behaves as a short length bar. 
 

• Long section L →∞ 
In this case, Eq. 6 can be rewritten as follows: 

( )
r

Z p
rCp

=

   (8) 
With r the thermal resistance with a unit of length and C the 
thermal capacity with a unit of length: 

1
r et C S c

Sλ
= =

           
r et C S cρ= =

.  (9) 
The same limited development is used for a given L at high 
frequency which means that if the system is excited with a 
sinusoidal signal of high frequency, the bar of a finite length 
behaves same as an infinite length bar. 

For the high frequencies the bar behaves like a non-
integer order system equal to 0,5. The bode plot (Fig. 2) of the 
transfer function Eq. 6 clearly shows this frequency behavior. 
The corresponding parameters to aluminum are: ρ=2702 
kg/m3; c=903 J/kg.K; λ=237 w/mk 
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Fig. 2. Bode plot of the theory modeling of the heat transfer 

 
All in all, heat transfer is governed by a diffusion 
phenomenon, which can be modeled using a non-integer 
operator (n=0.5). The aim of following part is to find a model 
able to represent diffusion behavior. 

IV. MODELING OF THE DIFFUSIVE INTERFACE 

A. Approach based on temporel response  

To model the thermal test bench, we introduced a gain G1 
that varied from 0.14 to 0.18 (determined experimentally) 
according to the applied input. Using Eq. 8, the step response 
of the thermal test bench can be written as follows: 
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The inverse Lapalace transform of 1/p3/2, can be 
determined based on the formula of complex integration by 
Eq.11: 
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In order to calculate this integral, we have to use the 
residue theorem, keeping the same closed contour of 
integration.  

Suppose that:  
3 / 2
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The F(p) function has branch point at p=0 because of p3/2.  

The contour of integration is determined by Fig.3.  

 

 

Fig.3 Contour of integration 
 
According to the residue theorem, we can write: 

( ) 2I F p dp J residus dans le contourπ= = ∑∫�   (Residue inside the contour) 

(13) 
Finally, we get: 
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This leads us to write: 
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    (15) 
The bloc diagram is given by Fig. 4 , y0 presents the ambient 
temperature while no input is applied to the system. The gain 
G2 helps to find the temperature value, it is equal to 20 
(determined experimentally ).

  

 

 

 

Fig.4. Functional diagram of the proposed model 

 

The transfer functions describing the model are given with 

Eq.16: 
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The time response describing the model is given by the 

application of the Laplace transform to the Eq.16. 
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B. Approach based on fractional order integrator 

According to Trigeassou approach, the synthesis of an 

integrator of order n=0.5 is based on the association of an 

integer integrator 1/p with a fractional phase-advance filter 

acting in the frequency band [ωb, ωh]. The transfer function is 

given by the Eq.18. 
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This filter is approximated to a proposed filter by par 
A.Oustaloup [9], filter with advance and delay phase:  
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The non-integer integrator of order 0.5 can be 

synthesized from five elementary cells; the non-integer 

behavior shows up in the frequency band 10-4 and 10-1.  

The table below shows the different values of ai and τi used for 

the simulation. 

 
TABLE I. Values of ai and τi 

i 1 2 3 4 5 

ai 0.26 1.1 0.26 0.26 0.26 
τi 10 100 100 1000 10000 

The non-integer order integrator of 0.5 bounded in frequency 

is given by the equation below: 
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The Bode plot of the integrator is represented by Fig. 5. 
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Fig. 5 Bode plot of I0.5 

The bloc diagram of the model is given by Fig. 6. The 

coefficient a is determined from experimental essays, it varies 

from 3.57 to 3.61. 

  
 

 
 

Fig. 6 Functional diagram of the poposed model  
 

The transfer function describing the model is given by Eq. 21: 
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V. P EXPERIMENTAL RESULTS  

We consider the system of the heat transfer with the limit 
conditions. Proposed models to get an approximate interface of 
diffusion are the first diffusive model described by Eq.16, and 
the second one given by Eq.21. 

We apply a constant input voltage u for an hour and a half 
and we note the value of the temperature at 3 different 
positions (x1,x2 and x3), with the sampling period Te= 10s. The 
Fig.7 shows the real step response and the theoretical one given 
by the proposed model based on fractional integrator. 

We apply in second essay two distinctive voltages (U1, U2 

where U2>U1) at x=0. Fig.8 compares the real step response 
with the two proposed models. 
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Fig.7 Response system according to two proposed model and the 

experimental test for an input voltage of U1 and U2 
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Fig.8 Response system according to Trigeassou model and the 

experimental test for an input voltage of U1 and U2 and 3 different positions 

 

From Fig.7 and Fig.8, the temperature variation, presents 
waves that justifies the wave character of the heat spread 
proved with theory. 

For both methods, the effectiveness of proposed models 
fitting the true response can be observed. Proposed new models 
of heat transfer compared to real system output give 
satisfactory results. It may be concluded that the two methods 
are very efficient in finding real behavior of heat transfer and 
they are also simple to implement 

From Fig. 8, we can say that for the fifty first iterations, the 
proposed model based on temporal response is closer to the 
real response than the Trigeassou model. For the following 
iterations the Trigeassou model reproduces best the real 
response. Up to four hundred iterations, both models get 
combined.  

 

VI. CONCLUSION  

In this paper, we present two different approaches to 
model a thermal test bench of an aluminum heated bar at one 
extremity. The first model is based on temporal approach and 
the second one is obtained using a non-integer integrator 
operator where the fractional behavior acts only over a limited 
frequency band. Then the two different models are compared 
to a real diffusive system and they show effectiveness to fit the 
true response. Illustrative examples was presented to show the 
practically usefulness of the two approaches and comparative 
discussion was also elaborated. 

 

REFERENCES 
[1] A. Benchellal, S. Bachir, T. Poinot, J. Trigeassou, Identification of a 

non-integer model of induction machines, in:Proceedings of FDA’04, 
First IFAC Workshop on Fractional Differentiation and its Applications, 
Bordeaux, France, 2004, pp. 400–407. 

T(p) 

y0 
Y(p) I(p) 

U(p) 

     G1 0.5( )
r

a I p
rC

⋅ ⋅

 

    G2 
Yf(p) 



International Journal of Scientific Research & Engineering Technology (IJSET) 
ISSN: 2356-5608, Vol.3, issue 3 
Copyright IPCO-2015-pp.1-5 
[2] D. Riu, N. Retiere, Implicit half-order systems utilisation for diffusion 

phenomenon modelling, in: Proceedings of FDA’04, First IFAC 
Workshop on Fractional Differentiation and its Applications, Bordeaux, 
France, 2004, pp. 387–392. 

[3] M. Ichise, Y. Nagayanagi, T. Kojima, An analog simulation of non 
integer order transfer functions for analysis of electrode processes, J. 
Electroanal. Chem. Interfacial Electrochem. 33 (1971) 253. 

[4] X. Moreau, O. Altet, A. Oustaloup, Pheomenological description of the 
fractional differentiation in rheology, in: First IFAC Workshop on 
Fractional Differentiation and its Applications, Bordeaux, France, 2004, 
pp. 74–79. 

[5] J. Lin, T. Poinot, J. Trigeassou, R. Ouvrard, Parameter estimation of 
fractional systems: application to the modeling of a lead-acid battery, in: 
SYSID 2000, 12th IFAC Symposium on System Identification, Santa 
Barbara, USA, 2000. 

[6] T. Poinot, J.-C. Trigeassou, Parameter estimation of fractional models: 
application to the modeling of diffusive systems, in: Proceedings of 15th 
IFAC World Congress, Barcelona, Spain, 2002. 

[7] T. Poinot, J.-C. Trigeassou, Modelling and simulation of fractional 
systems, in: First IFAC Workshop on Fractional Differentiation and its 
Applications, Bordeaux, France, 2004, pp. 656–663. 

[8] J.-C. Trigeassou, T. Poinot, J. Lin, A. Oustaloup, F. Levron, Modeling 
and identification of a non integer order system, in: Proceedings of 
ECC’99, European Control Conference, Karlsruhe, Germany, 1999. 

[9] T. Poinot, J.-C. Trigeassou, A method for modelling and simulation of 
fractional systems, Signal Processing 83 (2003) 2319–2333 (Special 
Issue on Fractional Signal Processing Applications) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


