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Abstract— The improvements that can be achieved by using
BlLogReg [feature selection aigorvithm on the performance of
artificial neural network based classiffers is investigated. In that
an artificial newral network based classifier is build, trained, and
tested using the dataset oblained from mobile robot in machine
learning repository (uci). The previous model is then compared o
a model applied on a new dataset. The new dataset is obtained by
eliminating irvelevant features from the (uci) dataset through the
BLogReg algorithm. It is demonstrated that by using the BLogReg
algorithm to eliminate unreliable and irrelevant features, both the
performance and the accuracy of the classifier can be sufficiently
increased,
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1. INTRODUCTION

In order to improve the mobile robot applications several
studies have been conducted on Scitos GS, a mobile robot
platform. However, not enough investigate has been done on
the classification and optimum accuracy of classification [1]
Furthermore, few studies have dealt with featwre selection
implementations on classification models, some of those
include areas such as robotic, social and health [2]. Yert hutle
emphasize have been given to the BLogReg algonthm which
is related to Bayesian method [3].

Classification studies are vitally important in mobile robots
for determuming direction of the robot’s movements and
applying feature selection to the classification is essential to
improve the models [4,5].

This research was conducted on a dataset from mobile
robots, Developed artificial neural network model have been
used to determine the directions of the robot. Two similar
types of ANNs models have been implemented. One type was
implemented on the given dataset and a simular model was
implemented on a new dataset obmmed from the given
dataset after eliminating trelevant features using BLogReg
feature selection algorithm [6,7,8]. The rwo models were then
compared in terms of performance and accuracy. The study
illustrates the improvements in both the model's accuracy and
performance of the classifier when the feature selection
algorithm is implemented on the dataset.
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II. BAYESIAN, SLOGREG AND BLOGREG

The feature algorithm chosen for this study is Bayesian
Logistic Regression (BLogReg). This algorithm has been
mainly preferred because it 1s much faster and 1t is free from
any selection bias which fits with owr dataset where all our
input sensors are of equal importance [9.10].

Bayesian  Equation negative log-likehhood can  be
described as follows:
/
g~ 5 s(ns () 0

9 is assumed to be an independent and identically distributed
sample from Bernoulli distribution.
{" is the training examples

A, is a vector of measwrements for the i-th example

v, 1s the class that J-th example belongs to

given that:

g{e}= k,g(”rl:n']

Spares Logistic Regression equation can be obtained from
Equation (1) by adding a regulanization term as follows:
M=Eg+AiE, ()
Where
A 18 a regularization parameter to control the bias (strictly
positive)
¢« is the bias parameter
Where

7

[

Eq = x|y
=1

By elimunating the 4 parameter from Equation (2), a

revised optimization cnterion can be obtained called
Bayesian Logistic Regression (BLogReg).
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A, Materials and Methods

Scitos G5 mobile robot was used to navigate some
environment. The robot uses the data coming from 24
ultrasonic sensors as wnputs and provides 4 classified outputs
to guide the robot while navigating (moving shightly night,
sharply right, forward, or shightly left). To help the robot
navigate through processing the input data, an artificial neural
network was developed. Table | shows part of the input data
taking from 5456 samples,

TABLE I
INPUT DATA FROM CHOSEN SENSORS

Sensor1 | Sensor2 | Semsor 12 | Sensor 20 | Semsor 24
0.438 0.498 1.687 0.445 0.429
0.438 0.498 1.687 0.449 0.429

~0.438 0.498 1.687 0.449 0.420
0.437 0.501 1.687 0.449 0.429
0.438 0.498 1.687 0.449 0.429
0.439 0.498 1.656 0.446 0.43
0.44 5 1.684 0.451 0.432
0.444 5021 1.68 0.453 0.436
0.451 5.025 1.673 0.457 0.442
0.458 5.022 1.666 0.462 0.449
0.465 0.52% 1.658 0.467 0.457
0.473 0.533 1.651 0.469 0.465

Before modelling the dataset was divided into a traming set,
which takes 60% of the total data or 3275 samples, and test
set, which takes 40% of the total data or 2181 samples. Fig |
shows the neural network module with 40 hidden-layers.

Hidden Layer

Output Layes

4 1
Fig 1 The amtificanl noural network module

11 THE EFFECT OF BLOGREG ALGORITHM ON CLASSIFICATION
PROBLEM

A, The robor and the dataset

The SCITOS G5 belongs to the metraLab in Germany
(htp://metralabs.com). The robot is designed for indoor uses.
The weight of the robot is 60 kilograms and the maximum
speed 1s 1.4 meters per second. The robot is capable of
rotating 360 degrees. Fig. 2 shows the Scitos G5 robot,

The data were collected by sampling at a rate of 9 samples
per seconds generating a database of 5456 examples. This
data are then used to train the newral network. In order for the
robot to make directional decisions it follows IF-THEN
algorithm measuring front-distance and left-distance, while
also calculating distances to the nght and behind the
algorithm goes as follows [11,12)
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Wall-Following Algorithin
if leftDist > 0.9
then
if frontDist <= 0.9
then Stop and turn to the right
else Slow down and tum to the left
if frontDist <= 0.9
then Stop and turn to the right
else if leftDist < 0.55
then Slow down and tum to the right
else Move forward

Fig 2 The Scitos GS mobnle robot

B. Applving BLogReg Algovithm to Eliminate Features

Using the BLogReg algorithm on the given dataset
eliminated some input sensors. The more significant sensors’
inputs according to the algorithm are listed in Table 2 nlong
with their weights,

TABLE I
THE MORE SIGNIFICANT INPUTS AND THEIR WEIGHTS
The Move Sigaificant Iupwt Weights of the Sensors
Sensors

24 10.968690
11 10202424

15 8.601046

18 8.168761

17 7.731453

13 7.242650

o 5.566802

23 3972673

1 3.031587

Rl 2919844

s 2.762847

8 2.626482

16 2468423

3 2122611

With the inputs and weight values in Table 2, only the first
six sensors were chosen to be the inputs to the nuproved
neural network.
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C. Comparing the Performance and Accuracy The accuracy of both modules was compared through the
To compare the performance and the accuracy of the regression curve. Fig. 5 shows the regression curve for the
Artificial neural networks on the original dataset and on the module on the original dataset and Fig. 6 shows the

dataset obtained after applying BLogReg algorithm, the MSE regression for the module applied on the derived dataset.
and the regression were potted and compared. Fig. 3 shows

the performance of the module applied to the original dataset R=0.71376
through MSE and Fig. 4 shows the performance of the 6 1 ’ b
module on the derived dataset ° E_';'“
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The regression line m Fig. 6 shows a linear model
regression Y = (0,78 * X+ 0.5) with R-squared being about
0.642 and thus about 64% of the variability can be explained
through model. In Fig. 5 R-squared is approximately 0.509
with about 51% of the wvariability explained through the
model.

From the previous figures and through Matlab, the
performance of the module is seen to merease from 0.6868 to
0.8326 and the regression value increases from 0.71376 to
0.8017 indicating more accuracy in the module [13].

IV. CoNCLUSION

The work shows that improvement in classification
problems can be made using BLogReg algorithm to help
robots navigate their environments. The improvement is in
achieving more accuracy in the module, mimimum error and
faster implementation.

The paper shows the improvement that can be made using
the BLogReg algorithm to elimunate msignificant inputs,
where all inputs are identical sensors that have the same
contribution to the decision making of direction.

Further work can be carmed out: one could use the
BLogReg algorithm on different datasets, where mputs are
not of equal importance. At the same time, other algonthms
could be trialed and tested in the field of robotic navigation or
other related fields. It is also important to try the BLogReg
algorithms on bigger or even smaller datasets to further verify
the results achieved in this work.
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