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Abstract—In this paper, a robust fuzzy model predictive 
control (MPC) strategy was proposed for leading to promote 
a comfortable micro-climate for the plants growth inside a 
greenhouse. Based on Takagi-Sugeno (TS) fuzzy model and 
a non-parallel distributed compensation (non-PDC) fuzzy 
controller, the MPC problem can be reduced to sufficient 
conditions expressed as linear matrix inequalities (LMIs). 
To show the merit of the applied method against external 
disturbances and model parameter uncertainties, several 
simulation experiments were performed. 

KeyWords: model predictive control; Takagi-sugeno fuzzy 
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I. INTRODUCTION 

A greenhouse is an enclosure that used to improve the autonomous 
crops cultivation process. Generally, it allows the creation of a 
favorable inside micro-climate to crop development and protects 
it from weather conditions changing. The simple structure of 
the greenhouse, represented in a thin film cover, allows a good 
exchange of energy and mass balance but creates a strong interaction 
between inside and outside environments. Moreover, greenhouses 
are considered as time-varying systems because they never stay as 
initially designed [1]. Regarding these difficulties, controller design 
for the greenhouse micro-climate management must deal with the 
system nonlinearity, disturbance rejection and uncertainties due to 
modeling mistakes and imperfect measurements. 

In recent years, it has shown that control plays a very important 
role in greenhouse systems. However, many greenhouses use 
conventional controllers such as on-off and PID controllers 
[2]. But these control strategies may not be able to guaranty 
the desired performances due to highly nonlinear characteristic 
and strong coupling of the greenhouse variables [3]. Thus, in 
order to improve the quantity and quality of the greenhouse 
crops product, several advanced control strategies have been 
proposed in various control synthesis such as optimal control 
[4]. Intelligent and soft computational based controllers such as 

 

 

 
Fig. 1. Greenhouse system. 

 

 

Secondly, Based on a non-PDC control law, a model predictive 
controller (MPC) is designed to deal with the system uncertainties 
and external disturbances. The constrained optimization problem of 
MPC is formulated by LMI constraints. The effectiveness of the 
proposed method was revealed through experiment simulation and 
statistical calculations. 

The rest of the paper is organized as follows. In Section 2, 
the nonlinear dynamic model and the T-S fuzzy modeling of the 
greenhouse are presented. Then, in Section 3, the nonlinear MPC 
based on T-S fuzzy model formulation is given. In Section 4, the 
simulation result of the proposed control method on the greenhouse 
is illustrated. Finally, Conclusions are given in Section 5. 

II. GREENHOUSE PHYSICAL MODEL AND T-S MODELING 

A. Physical model 

An analytic model is considered to describe the dynamic behavior 
of the greenhouse. Based on the heating-cooling ventilating model, 
a greenhouse climate dynamic model was developed in [12] Fig. 1: 
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fuzzy systems, Neurocomputing, and evolutionary algorithms [5], 
[6], [7]. Advanced techniques like predictive [8], adaptive [9], 
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[10]. Recently, robust control is gaining popularity in greenhouse 
micro-climate control system due to its ability in guaranteeing good 
performance in spite of modeling uncertainties and disturbances [11]. 
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In this paper, a model predictive control based on a fuzzy model 
is considered. Firstly, a T-S fuzzy model is developed to deal 
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with greenhouse nonlinearity. For this purpose, the global model is 
divided into local linear models blended using weighed functions. 
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M1 (z1(k)) + M2 (z1(k)) = 1 and M1 (z2(k)) + M2 (z2(k)) = 1. 
Therefore the membership functions can be calculated as: 
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Consequently the nonlinear system (2) can be represented by the 
following four IF-THEN rules: 

Where the output variables are: inside temperature Tin(˚C) and If z1(k) is M 1 and z2(k) is M 2 Then 
1 1 

inside relative humidity RHin in (%). The input variables that can 

be manipulated are heating control Qheat(W ) , water capacity of 
the fog system Qfog(gH2Os−1) and ventilation rate Vr(m3s−1). 
Measurable perturbations are: solar radiation intercepted by the 
greenhouse Si(Wm−2), outside temperature T  (˚C) and outside 

x(k + 1) = Ax(k) + B1u(k) + Dd(k) 

y(k) = Cx(k) 

If z1(k) is M 1 and z2(k) is M 2 Then 
out 1 2 

relative humidity RHout(%). UA is the heat transfer coefficient of 

enclosure (WK−1), ρ is the air density (1.2kgm−3), Cp is the 
specific heat of air (1006Jkg−1K−1), E(Si, RHin) denotes the 
evapo-transpiration rate of the plant (g/s), which is affected by the 
given solar radiation, λ is the latent heat of vaporization (2257Jg−1), 

x(k + 1) = Ax(k) + B2u(k) + Dd(k) 

y(k) = Cx(k) 

If z1(k) is M 1 and z2(k) is M 2 Then 
2 1 and βT are lump parameters, VT and VH are the temperature α 

3 
 

x(k + 1) = Ax(k) + B3u(k) + Dd(k) 
and humidity active mixing air volumes of a ventilated space (m ), 
respectively. 

By transforming the control variables through these equations 

y(k) = Cx(k) 

max max If z1(k) is M 1 and z2(k) is M 2 Then 
Qheat,%  = 100 ∗ Qheat/Qheat, Qfog,%  = 100 ∗ Qfog/Qfog , 2 2 

Vr,% = 100 ∗ Vr/V max, the model described by equations (1a) and 

(1b) can be normalized. Then, the dynamic model of the greenhouse 
can be expressed as: 

x(k + 1) = Ax(k) + B4u(k) + Dd(k) 

y(k) = Cx(k) 

x(k + 1) = Ax(k) + Bu(k) + Dd(k) 

y(k) = Cx(k) (2) 

Then the equivalent T-S fuzzy model is 
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III. CONSTRAINT MODEL PREDICTIVE CONTROL 

A. Cost function 

and the state vector x = [x1, x2]T = [Tin, Hin]T , the input vector 
u = [u1, u2, u3] = [Qheat,%, Qfog,%, Vr,%] and the disturbance 
vector d = [d1, d2, d3]T = [Si, Tout, Hout]T . 

Let us consider the following problem, which minimizes the 
following objective function in an infinite horizon [13] 

In order to obtain the best possible performance from this highly 
nonlinear system, the following sub-section gives a T-S fuzzy repre- 
sentation of (2) 
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In above model, the nonlinear terms are  1  (Tin(k) − Tout(k)) 
T 

V (Hin(k) − Hout(k)), and the variables in the 
greenhouse are assumed varying in the operating range 
Tin,min ≤ Tin ≤ Tin,max and Hin,min ≤ Hin ≤ Hin,max. 

For the nonlinear terms, we define z1(k) =  1  (Tin(k) − Tout(k)) 
T 

z2(k) = V (Hin(k) − Hout(k)), then, for every instance 

the minimum and the maximum of z1 and z2 can be obtained, 
z1 ≤ z1 ≤ z1 and z2 ≤ z2 ≤ z2. The simplified expressions can 
be written as follow: z1(k) = M 1(z1(k))z1 + M 1(z1(k))z1 

where Q > 0 and R > 0 are both known symmetric weighting 
matrices. The above performance objectif function is subject to the 

following constraints, umin ≤ u(k + h|k) ≤ umax and ymin ≤ 
y(k + h|k) ≤ ymax. 

B. Discret T-S fuzzy model 

In this work, a T-S fuzzy model with r-rules is employed to 
describe the dynamics of the discrete-time nonlinear system. 
Rule i: IF z1(k) is Mi, and z2(k) is Mi, and . . . and zΘ(k) is Mi , 
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And Ai, Bi and Ci are states matrices of system. 

By following the same method as given in Theorem 1, the control 
law will be as: 

C. Fuzzy non-PDC control law 

The non-PDC law presented in [14] is used in this section, and is 
given as: 
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IV. SIMULATION RESULTS 

In the following, a greenhouse micro-climate control simulations 

Substituting (6) in (5), the closed loop system is given as follows: 

x(k + 1) = (Az − Bz Fz G
−1

)x(k) 

are given. These simulations were carried out using the greenhouse 
model (1). The heating, the fogging and the ventilation systems are 
considered as the control inputs, while the state variables are the 
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inside temperature and the inside humidity. The outside radiation, 
the outside temperature, and the outside humidity are considered as 
the main surrounding external disturbances that widely influence the 
greenhouse dynamics Fig. 1. 

z 

Gz = 
i=1 hi(z(k))Ci 

hi(z(k))Gi, 
Fz = i=1 hi(z(k))Fi,  and 

must be bounded by minimum and maximum, the operating range 
 

 

Theorem 1: Consider that the system states x(k/k) are measured 
at each sampling time k. The closed-loop discrete-time fuzzy system, 

of the inside humidity is 0 ≤ Hin ≤ 100%. Then the T-S fuzzy 
model of the nonlinear system (2) is as follows: 

given by (7), is globally asymptotically stable if there exist positive 
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Hence, disturbances are measurable, the above system can be aug- 
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The proof detail is given in [14]. 

Remark 1 : In most application, a regulation task is required. 
However, in Theorem 1, only stabilization conditions are derived 
based on the cost function (4). In order to force the system state 
x(k/k) to follow a constant non-zero reference signal r, the following 

cost function should be minimized: 
∞ 

J∞(k) =  x(k + h|k) − r(k) 
 2 

+  u(k + h|k) 
 2 
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0 1 0 

The control objective to achieve is the best tracking of the greenhouse 
micro-climate in the presence of the model uncertainties and widely 
varying external disturbances. In the same time, constraints imposed 
by control actuators limitation must be considered. In all cases, 
the reference signal applied for the temperature is the external 
temperature plus an offset of 5˚C and for the humidity is the external 

humidity plus an offset of 15%. The optimization problem at each 

step is solved using YALMIP toolbox [15], under MATLAB software. 
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TABLE I 
PERFORMANCE OF THE PROPOSED METHOD AGAINST MODELING 

UNCERTAINTIES AND EXTERNAL DISTURBANCES. 

 

Without uncertainties  With uncertainties 

Criteria Temperature Humidity Temperature Humidity 

SSE 10.7124 7.3284 13.0955 9.3565 

MSE 0.0186 0.0127 0.0227 0.0162 
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Fig. 2. Performance of the greenhouse micro-climate control tracking with 
modeling uncertainties 

 

 

First experiment simulation, no uncertainties were added to the 
process parameters and only the external disturbances were consid- 
ered. As illustrated in Fig. 2a, the system can follow the temperature 
and humidity under reference signals with high performance with 
a maximum deviation from the reference signals of 0.6˚C for the 

inside temperature and 1% for the inside humidity. Fig. 2b shows 

the control signals. In the second simulation, to further challenge the 
proposed method and in order to show the robustness of the applied 
controller against the changes in system parameters, a variation of 
10% was applied to the greenhouse parameters. Fig. 2a shows the 
good track of the reference signals with a maximum deviation of 
1˚C for the inside temperature and 1.5% for the inside humidity. To 

more determine the effectiveness of the used method, two common 
error measurement criteria, i.e., Sum of the Squared Errors (SSE) and 
Mean Square Error (MSE) were calculated and given in Table I. 

V. CONCLUSION 

In this work, a fuzzy model predictive controller has been proposed 
for temperature and humidity regulation in a greenhouse, taking 

 

 

 
into account the external disturbance and modeling uncertainties. 
Based on the non-PDC strategy and T-S fuzzy modeling, the control 
action can be given at every sampling time. Results have shown the 
effectiveness of the proposed controller on tracking the reference 
signals subject to input-output constraints. 
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