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Abstract—This study deals with the implementation of Kalman 
filter for the prediction of stream-flow in Ergene River Basin. In 
the study, stream-flow, precipitation and wastewater are chosen 
as the state variables during the prediction process since these 
parameters are highly effective on the stream-flow. Effects of 
precipitation and wastewater are calculated via Soil and Water 
Assessment Tool (SWAT) model in the study. Covariance matrices 
are calculated by using real-time data with 5 year length and 
model performance is tested with short and long-term predictions 
based on measurements and the accuracy of the proposed method 
is evaluated with Nash-Sutcliffe efficiency coefficient(NS) and root 
mean squared error (RMSE). 

I. INTRODUCTION 

A large number of empirical and analytical models are 

available for streamflow forecasting that can be classified 

as short, medium and long-term forecasting models [1], [2]. 

Linear quadratic estimation (LQE) and Kalman filtering are 

considered as empirical stochastic models, which combine 

the dynamics and probability distribution of the measured 

variables in current state for forecasting future ones [3]. Jens et 

al. (1985) used Kalman filter for real time operation of surface 

water flow by forecasting in stochastic space in rainfall-runoff 

model of Mike 11 hydrodynamic model [4]. They discussed 

the source of uncertainty and stated that it came from the 

precipitation that is the input to rainfall-runoff. Ngan (1986) 

compared autoregressive models with Kalman filter based flow 

forecasting in his PhD thesis [5]. He showed that Kalman filter 

had better reliability in flow prediction compared to ARMAX. 

Jean (2004) used it for groundwater level forecasting as well 

as rainfall-runoff prediction in Danish Hydraulic Institution 

(DHI) [6]. Moradkhani et al. (2005), forecasted one-day ahead 

streamflow of the Leaf River watershed by using a dual state 

parameter estimation approach based on the Ensemble Kalman 

Filter (EnKF) and showed that the results are very consistent 

with the observations [7]. Clark et al. (2008) described an 

application of the EnKF in which streamflow observations 

are used to update the states in a distributed hydrological 

model for extracting the source of uncertainty [8]. In another 

study similar to their work, Noh et al. (2013) assessed EnKF 

and particle filter (PF) with another distributed hydrologic 

model and showed that the Kalman filter model is sensitive 

for the length of lag time [9]. Rasmussen et al. (2015) 

assessed the assimilation of groundwater and streamflow data 

in integrated hydrologic model in the size of ensemble and 

localization of Kalman filter [10]. They concluded that the 

required ensemble size depends heavily on the assimilation of 

discharge observations and estimation of parameters as well as 

on the number of observed variables. Deng et al. (2016) used 

ensemble Kalman filter for identification of temporal variation 

of hydrologic parameters in a monthly water balance model 

[11]. They used the filter for Wudinghe basin in China and 

showed the effectiveness of its detection on storage capacity. 

Mathematical models involved in streamflow prediction to 

provide more simplistic solutions considering physical ones 

require comprehensive geographic and measured data. They 

chose a few of hundreds of variables that affect the streamflow 

most and dealt with the error caused by linearization and vari- 

able ignorance. For this purpose, Kalman Filters are used [12]. 

They achieved promising results. Later, regression models and 

Artificial Neural Networks are added to the methods with their 

own approach to the problem and successful predictions [13], 

[14], [15]. Today, numerous different methods are used to 

predict streamflow or enhance the ones that are already being 

used such as Chaos Theory to improve prediction length of 

Kalman Filter [16]. Another recent addition to this study area 

is wavelets, by adding periodic knowledge to the model, they 

increase the accuracy of it [17], [18]. 

Kalman filter is first proposed by R.E. Kalman [19]. This 

method takes observation errors and disturbances into account, 

minimizes the modelling errors and its convergence is guar- 

anteed. Because of these features, Kalman filter is commonly 

used in, but not limited with, aircraft position estimation and 

control systems [20], [21]. Chemical processes are other study 

areas that prediction accuracy of Kalman filter is frequently 

exploited [22]. Also, increasing awareness of global warming 

is attracting more attention every year to prediction and 

management of water resources [12]. In some cases, Kalman 

Filter’s accuracy outperforms other prediction methods [23]. 

SWAT is used in many studies with the help of its wide 

access to environmental data such as soil moisture, snow cover 

fraction, streamflow and many more. In its cooperation with 

Kalman Filter, generally SWAT is the predicting part and 

Kalman Filter is a tool that prepares inputs to the model by 
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negating some of the process and measurement noises. Similar 

studies are taken part in China and Senegal [24], [25], [26]. In 

all cases, Kalman Filter provided significant accuracy increase 

and proved its success. 

Different from existing literature, in this study, Kalman 

filtering method is used for the prediction of streamflow with 

the help of SWAT where Kalman Filter is the predicting part 

in Ergene River Basin in Turkey. This river basin is located 

in the European part of Turkey with about 12,000 square 

kilometers of land having mostly very fertile agricultural 

fields, 1.2 million of population and seven large organized 

industrial zones, all exploited the surface and groundwater 

of this watershed. Particularly the northern part of the river 

basin is affected by dense industrial regions near Istanbul 

metropolitan. Here, the daily data of nine meteorological and 

three main hydrometric stations is used for the simulation 

studies within the frame of this paper. The prediction and 

analysis of stream-flow in the area is carried out via Kalman 

filtering method. 

Organization in this paper is as follows. In section 2, 

we described the study area, its meteorological history and 

geological characteristics. In section 3, Kalman filter and its 

implementation to the model are explained. In section 4, the 

simulation results presented and discussed. 

II. MATERIALS 

Streamflow is affected by various natural and unnatural 

factors. While most of them are taken into account by physical 

models during the streamflow prediction stage, mathematical 

models tend to restrict the number of system inputs, due to the 

increased complexity and computational time requirements. 

Along with its advantages, selecting the inputs to be processed 

has some disadvantages. Due to removal of some terms in the 

equation of the model, accuracy loss that leads to uncertainty 

is unavoidable. In addition, removed terms become noise for 

the system. Depending on input selection, the equation must 

be adjusted with respect to the inputs and noise in order to 

minimize the prediction error. 

A. Study area 

The Ergene River Basin taken as the area of study is in 

the European part of Turkey. It is in the Marmara Region and 

located in the central part of the Thrace region between 40 

39° and 42 05° north latitude and 25 59° and 28 10° east 

longitude, as shown in Figure 1. The total area of the Ergene 

River Basin is 11,020 km2. The Ergene River originates from 

the Istranca Mountains in the northeast of the basin and travel 

through east-west direction by collecting various branches 

from North and South bank of the river. Dominant land use 

in the study area is cropland (76%), and then pasture and 

sporadic forest include (18.7%), only 5.3% of study area 

occupied by urban and industrial area based on prepared land 

use in 2012. There are more than 40 meteorological stations 

in the Ergene River Basin with different meteorological data 

periods. In addition, there are seven stream gauges in the 

Ergene River Basin, three of them are found in the main 

river, and two of them are used in this research. The Ergene 

River Basin is under the influence of the terrestrial climate; the 

northern summers are hot and arid, and the winters are cold 

and hard. The Mediterranean climate is dominant in the south 

of the basin and the summers are hot and dry, the winters are 

warm and rainy. The average annual temperature in Thrace 

is 13°C. The highest temperature in Thrace is measured as 

44.6°C in Luleburgaz. The lowest temperature in the region 

is -17.9°C. The distribution of precipitation within the year is 

geographically similar throughout the basin, but the amount 

of rainfall is less in regions, where industry and population 

growth are highest, such as in Cerkezkoy, Corlu, Luleburgaz. 

The average total precipitation in Thrace Region is 602 mm 

and the highest daily precipitation is observed in Corlu with 

a value of 232 mm. Annual average precipitation (for 45 

years 1970-2014) calculated from meteorological stations is 

about 590 mm. The lowest monthly average rainfall in the 

basin is observed in August, whereas the highest monthly 

average rainfall is observed in November. Continuous daily 

stream flow is available for Inanli and Luleburgaz stream 

gauges for 35 years (1980-2014). These data are analyzed 

by separating the base flow, which it is approximately 6% 

of rainfall as the average direct runoff. Double Mass Curve 

analysis, applied on daily stream flows for 35 years, shows a 

deviation on flow regime around 1997 in both stream gauges. 

In addition, a clear change is observed in the base flow 

characteristics of the river after 1997 which coincides with 

the start of industrial development in the region. This base 

flow increment shows the amount of point source discharges 

to the river by industrial activities. Furthermore, in natural 

condition, flow of the river in summer times were approaching 

zero (dry), however, in recent years, there is a continuous 

base flow without raining upstream of the river. Because 

of the concentration of industrial facilities, the natural flow 

mechanism of the river has been disturbed due to discharge 

of groundwater or network water used by these facilities, and 

the increase of the amount of domestic wastewater discharged 

to the Ergene River due to rapid population growth, and as a 

result, the amount of flow reaches high values in the summer. 

For correction the effluents impact and natural streamflow 

prediction, a Kalman Filter model used in daily, monthly and 

annual time interval. 

III. METHODS 

After its first proposal by R.E Kalman, Kalman Filter 

became a subject to many studies and researchers tried to 

improve its performance. Calculation of Kalman Filter will be 

briefly explained in next section. Also, its more comprehensive 

explanation and derivation can be found in one of the more 

recent studies [27]. 

A. Kalman filtering 

The prediction via Kalman filtering is based on two val- 

ues; mathematical expectation that is calculated via equation 

written according to system dynamics and observed value that 

depends on measurements. But, due to the possible errors in 
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Fig. 1. Ergene River Basin and its zones 

 

 

these values based on linearization, ignoring less effective 

variables or measurements their reliability varies to time. 

This factor is tracked with Kalman Gain and weights of 

mathematical expectation and observed values are decided in 

final prediction. 

Kalman Filter has a cycle structure but first cycle requires 

initial state and covariance information to start. after these vari- 

ables provided, Kalman Filter cycle starts with the calculation 

of mathematical expectation and observed value as 

Fig. 2. Prediction cycle of Kalman Filter 
 

 

B. Streamflow forecasting by Kalman Filter in Ergene River 

Basin 

In streamflow prediction from soil moisture to snow water 

numerous variable are used by physical models but to simplify 

them mathematical models only uses a few of them that 

gives most information about characteristics of river. These are 

mostly chosen as precipitation, evaporation and temperature. 

During the implementation of Kalman Filter to Ergene River 

conditions of the environment are considered and variables are 

chosen. Since, Ergene River does not contain any big branches, 

changes on the main line are generally carried over to next 

 

and 

— 
k+1 = Axk + Buk+1 + wk (1) 

 

zk = Hxk + vk (2) 

stations. Watershed is under continental climate and that makes 

precipitation a major factor of this system. Due to its size, wa- 

tershed is divided into 3 precipitation zones. Conversion from 

mm to m3/s is made by SWAT model. Since, industrialization 

where w and v are error matrices of the equations. These 

errors can be caused by external factors, linearization, ignored 

variables or measurement process. A and H matrices relate 

state to results and might change in each time step but in this 

study, they are assumed to be time invariant. 

Kalman Filter plays a role in error negation and it is 

important to track error information of the system throughout 

the process. This information is carried by P which is the 

initial covariance matrix of x and updated during the process 

before the calculation of Kalman Gain and as preparation to 

next cycle with equations 

has an increasing trend in this area, wastewater poured in the 

river can not be ignored. Considering these characteristics, 

equation for Uzunkopru station’s streamflow prediction can 

be written as 

QU (k + 1) = c1QL(k) + c2WWL(k) + c3PZ(k) (7) 

where QL is previous station’s streamflow value, PZ is the 

total precipitation data collected from three zones 

PZ(k) = c4PZ1(k) + c5PZ2(k) + c6PZ3(k) (8) 

and WWL is wastewater affecting between two stations. For 

 

and 

— 
k+1 = APkAT + Q (3) relation of prediction and measurements, it is assumed that 

river tends to retain its previous state which gives 

Pk+1 = (I − KkH)Pk (4) 

where K denotes Kalman Gain and Q is the covariance matrix 

of w. Before final decision, reliability variable, Kalman Gain 

is updated according to system elements to decide weights of 

QU (k + 1) = QU (k). (9) 

Writing (7) and (9) in the form of (1) and (2) gives 
 

QU (k + 1) 
 

0 c1 c2 c3

  
QU (k)  

two pre-predictions as QL(k + 1)  =    QL(k)  + w (10) 

Kk = P− HT (HP− HT + R)−1 (5) WWL(k + 1)  0 0 1 0  WWL(k)  

where R is the covariance matrix of v. Then, it is used in 

− − 
and 

xk+1 = xk+1 + Kk(zk − Hxk+1) (6)  
QU

 (k)  

to determine whether the prediction will be close to mathe- Q (k + 1) =
 

1  0  0  0
 

 QL(k)  + v. (11) 
matical expectation or observed value. Here, Figure 2 presents U 

Kalman Filter’s prediction cycle. 
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In (9), even though next step of every input is calculated, 
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After choosing initial state of every variable, unknown ones 

are chosen with the optimization process that is presented in 

Figure 3. 

 
Fig. 4. Prediction of 6 input Kalman Filter model with real values, 8.3142 
RMSE and 0.8003 NS 

 

With all inputs, streamflow, precipitation and waste-water, 

predictions of model are close to the measured real values. 

Error is high only when the uncharacteristic changes occur 

such as flood or drought. But even in those situations Kalman 

Filter is able to predict the increase and decreases. 
 

 
 

 

 
 

 

Fig. 3. Optimization process of system variables 
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Mesaured data is separated into two groups, one for op- 

timization and other for testing. During optimization part 

constants in A matrix and covariances of w and v matrices 

that give best RMSE and NS are chosen. After that models 

are tested on test data and compared according to their RMSE 

and NS scores. 

 

 

IV. RESULTS AND DISCUSSION 
 

 

In this study, real data from 12.04.1981 to 31.12.1993 is 

used, where 50% of the data is utilized for optimization of 

constants and remaining is used for testing. To optimize Q 

and R matrices, constants in A matrix are chosen and with 

0.5, 0.25 and 0.1 resolution, every combination of Q and 

R matrices are tested by predicting the data and comparing 

it with the real values. Also effects of the precipitation is 

separated into 4 days with [0 0.5 0.3 0.2] weights respectively. 

Effects of the wastewater around 1990s are ignorable. So, for 

both 6 input and 5 input systems, best combinations of Q 

and R matrices are chosen based on RMSE of the models. 

Also, 5 input model has almost the same result because of 

industrialization’s negligible effect. Figure 3 and 4 show the 

predictions of these models respectively with the observed 

values of the Ergene River. While first model has 8.3142 

RMSE and 0.8003 NS(Nash Sutcliffe Efficiency Constant), 

second model has 8.2756 RMSE and 0.8022 NS. 

100 
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Fig. 5. Prediction of 5 input Kalman Filter model with real values, 8.2756 
RMSE and 0.8022 NS 

 

These two models have best results, high accuracy around 

river characteristics and reliable peak prediction during ex- 

treme conditions. Error covariances of this environmental 

model is not known and considering the length of data average 

values are tried to be found. For this purpose, variables of 

Q and R matrices from (12) are calculated with different 

resolutions. Table I shows the RMSE and NS performances 

of models that are created with different number of inputs 

and Q and R matrices. 

 
TABLE I 

ERRORS OF MODELS WITH DIFFERENT RESOLUTION OF Q AND R 
MATRICES 

 
Number of Inputs - 

Resolution 
5 6 

0.5 
8.3136 RMSE, 

0.8003 NS, 
8.3128 RMSE, 

0.8004 NS, 

0.25 
8.3168 RMSE, 

0.8002 NS, 
8.3142 RMSE, 

0.8003 NS, 

0.1 
8.2756 RMSE, 

0.8022 NS, - 

 

With these data and model creation choices, increased Q 

and R resolution and input number generally increase the 
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performance but these improvements are mostly underwhelm- 

ing. Also, considering computational demand increase that is 

presented in Table II, in this case, it is preferred to avoid long 

computation for small gain. 

 
 
 

 
 

 

 

600 
 
 
 
 
 
 
 

 
500 

 
 
 
 
 
 
 

 
400 

 
Streamflow Observations of Uzunköprü and Lüleburgaz Stations 

 
 
 
 
 
 

 
300 

 

 
TABLE II 

COMPUTATIONAL TIME REQUIREMENTS OF MODELS WITH DIFFERENT 

RESOLUTION OF Q AND R MATRICES 
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Fig. 6. Discharge of Uzunkopru and Luleburgaz stations 

 

 

 

 

 

 

As it can be seen from Table II, for 5 input models, 23 

hours longer computation improves model by 0.002 NS or 

0.04 RMSE. The same resolution increase for 6 input models 

multiplies the time requirement by 200 which at the end gives 

unsatisfactory improvements. 

Kalman Filter is known for its successful short term predic- 

tions but models are also used to calculate 7-14 and 30days 

long predictions. These are calculated for every consecutive 

7-14 and 30 day periods. Table III shows average errors 

for both one day predictions for given period(corrected) and 

without correcting system with observed values(uncorrected) 

predictions. 

Even though most of the time increase at Luleburgaz station 

is followed by another one at Uzunkopru, it is not valid for 

every case whereas Kalman Filter has only one pattern and 

unable to adapt this nonlinearity. Similarly, any effects that 

cause river’s discharge to exceed standard limits of the river, 

changes its dynamics and makes the pattern insufficient. In this 

case Kalman Filter answers with scaled version of previous 

day. Figure 7 shows an example of this problem. 
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TABLE III 

AVERAGE RMSE OF MODELS FOR 7-14 AND 30 DAY PREDICTIONS 
 

Period - 
Model 

5 input 
(Corrected) 

5 input 
(Uncorrected) 

6 input 
(Corrected) 

6 input 
(Uncorrected) 

7 days 2.4679 4.8308 2.6445 4.9811 

14 days 2.8853 6.4416 3.0257 6.4571 

30 days 3.5145 8.1995 3.6391 8.0850 
 

 

 

 

 

 

 

According to results given in Table III, Kalman Filter’s 

success drastically decreases when prediction period increases. 

The reason behind this is Kalman Filter makes its predictions 

based on previous ones and error of the model cumulates for 

later cycles. 

Considering best models, nonlinearity of the system and 

Kalman Filter’s restrictions are main sources of error. There 

are various factors affecting streamflow and majority of these 

effects are nonlinear. For example, Figure 6 shows Uzunkopru 

and Luleburgaz stations’ streamflow measurements. 

Fig. 7. Effects of river’s dynamics changes 

 

Figure 7 shows Linear Kalman Filters biggest problem in 

this study. Unknown characteristics lead to Kalman Filters 

unexpected results which are ,in most cases, scaled version of 

previous day. This type of error creates most of the prediction 

errors and once they are negated, success of Kalman Filter can 

be seen more clearly. 

V. CONCLUSION & FUTURE WORKS 

The implementation of Kalman filtering method in order to 

predict the stream-flow in Ergene River Basin is presented. 

In this study, in order to illustrate the success of proposed 

prediction method NS and RMSE are given and examined in 

detail. The successful application of Kalman filtering where 

the real-time data is used, proves that Kalman filtering can 

be utilized in order to complete the missing real-time data 

where it is necessary and also achieve short-term prediction 

for stream-flow. 

Beside Linear Kalman Filter’s success, its weak sides are 

observed such as higher error and uncharacteristic results 

around peaks. Also, high computational demand is seemed 

Uzunköprü streamflow 

Lüleburgaz streamflow 

Prediction 

Observation 

S
tr

e
a
m

fl
o
w

 (
m

3
/s

) 
S

tr
e
a
m

fl
o
w

 (
m

3
/s

) 

Number of Inputs - 
Resolution 

5 6 

0.5 1m30s 5m 

0.25 25m 2h30m 

0.1 48h 528h 

 



Vol.15 Iss.4 pp.35-41 International Journal of Scientific Research & Engineering Technology (IJSET) 

 

     © Copyright 2020 

      ISSN: 2356-5608 

 

as another problem. In order to overcome these problems, 

Ensemble Kalman Filter approach can be tried. Calculation 

of observed value at the beginning of the Kalman Filter cycle 

can be switched between seasons instead of just assuming to 

observe the same streamflow the next day. 
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