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Abstract— It is important to design a controller which makes the 
system insensitive to parameter variations and external disturbances. 
As it is very well known, Variable Structure Systems with Sliding 
Modes provides a controller which makes the system insensitive to 
parameter variations and external disturbances. It is also desirable that 
the controller should be designed in a way not to waste excessive 
amount of control effort. The optimal control is achieved through the 
minimization of a performance index in a way to regulate the states 
and minimizing the control effort. This problem is defined as an 
Optimal Linear Regulator problem. In this paper, an effort is carried 
out to utilize the advantages of Variable Structure System (VSS) 
theory’ results to Continuous and Discrete-Time Optimal Control 
Problems. The switching hyperplane matrix parameters which 
provides the desired new system dynamic are used as the performance 
index matrix parameters. That is equivalent to minimizing the 
switching hyperplane where the states are forced to stay on the 
switching hyperplane with minimum control effort without chattering 
around the switching hyperplane with high frequency. The theory is 
extended to the Discrete and Continuous Time Stochastic Optimal 
Control Problems. It is shown that the application of VSS theory’ 
results in an Optimal Control regulator problem can force the system 
states in a region where the system states are insensitive to plant 
parameter variations and external disturbances while at the same time 
the states are regulated in an optimal fashion with minimum control 
effort.  
 

Keywords—Variable Structure Control, Optimal Control, 

Continuous Time Control, Discrete Time Control, Stochastic 

Control.   

I. INTRODUCTION 

The application of Variable Structure Systems (VSS) with 
Sliding mode control provides a new system dynamic being  
insensitive to parameter variations and external disturbances. 
The details of the theory is covered in many literature 
           1713,4,3,2,1  and outlined very briefly in the 

following paragraphs. 
Consider the state space system below; 

)()()( tuBtxAtx 


            (1) 

)()( txDty                                (2) 

 
Here ; x(t) is the state vector of n states, u(t) is the ınput 

vector of m inputs and y(t) is the output vector of r outputs ; A 
is an nxn matrix, B is an nxm matrix and D is an rxn matrix. 
Sliding mode control input is the input which makes the 

system states to move on m switching hyperplanes 
;0)(.........)()( 21  tststs m  

where; 
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Here ;  
1jns  

In vector notation, this is simply  
0)()(  txCts               (4) 

Here, C is an mxn switching hyperplane matrix. 
 
When the states move on the sliding surface 

simultaneously on all m switching hyperplane called as a 
sliding regime hyperplanes, the rate of change of the sliding 
surface as determined by Eq.5 should be zero in order for the 
states to stay on the sliding surface .  

  0)()(  tuBtxCA
dt
ds               (5) 

This is of course a theoretical description and the control 
input found by solving Eq.(5) is termed as the equivalent 

control the solution of which is )()()( 1
txACCBtueq

 . The 

equivalent control, )(tueq , is not the operational control 

applied to the plant. It is a theoretical control input which 
helps the designer to find the resulting sliding mode equations. 

If this control is substituted into Eq.(1) assuming that 1)( 
CB  

exists, the VSS sliding  mode equations in Eq.(6) can be 
determined.   

   )()()( 1
txACCBBItx n




            (6)  

The above equations seems to be of order (nx1), however 
this may not be the case, since sliding surface 0)()(  txCts  

is reached  upon the application of the sliding mode control 
which in turn results m of the state variables in Eq.(3) to be 
defined as a linear combination of the remaining (n-m) state 
variables. We see that the dynamic of the system can be 
defined as desired by adjusting the parameters of switching 
hyper-plane matrix C . In this paper, the idea of forcing the 

states to move on a set of switching planes is tried to be 
applied to an optimal control problem where the switching 
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hyperplane is minimized which in turn results in regulating the 
states as desired by adjusting the parameters of the switching 
hyperplane matrix , C  with minimal control effort.   

We know that )(tueq  is not the operational control applied 

to the system and is only helpful in determining the sliding 
mode equations. The operational control input applied to the 
plant is the so called sliding mode control in the following 

form      32,1  . 

)sgn())(()(
1

jj
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i

i
i
jj stxtu   



            (7) 

where  

  
ju


(x(t))  sj(t)   0            (8) 

uj(t) = { 

  
ju


(x(t)) sj(t)   0 

The control input parameters i
j ’s are determined by 

considering the inequality in Eq.(9)  to be satisfied so that 
0)( ts is achieved . 

0)()( tsts


              (9) 

If the above inequality is satisfied, we see that the states 
will reach the switching hyperplane from any initial conditions 
and will try to stay , chatter around the hyperplane.As a result, 
we say that 0)( ts is achieved. The VSS theory has also been 

extended to Discrete Time Systems 
               1615,14,12,8,7,6,5   which is briefly summarized in 
the sequel.   

A single input-single output discrete time system is 
described by the equations given below.  

)()()()1( kfdkubkxAkx                          (10) 

where )(ku is the control input and )(kf is the disturbance 

added into the system with  
 nbb ..............000 ,  ndd ..............000 , A is nxn 

matrix and )(kx  is nx1 state vector.  

Assume that a control input is found such that the states 
stay on the switching plane so that Eq.(11) is satisfied.   
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where :ic are constants for 1.......,2,1  ni and . From Eq. 

(11), we see that 
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Substituting Eq.(11) into Eq.(10), the following new 
reduced order system equations are obtained as below,  
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We see that the new dynamic of the system do not include 
the external disturbance and can be made insensitive to 
parameter variations by adjusting the switching hyperplane 
parameters appropriately. Since the system is a discrete time 
system, the new system dynamic which is a reduced order 
system is stable if the absolute values of the eigenvalues of the 
new system matrix are less than one. This can be achieved by 
adjusting the coefficients of the switching plane. 

In a plant of general type, the discrete time sliding mode 
equations are obtained from the so called equivalent control 
method. The actual control applied to the system is determined  
as described below.  

When the states reaches the sliding surface and the 
condition in Eq.(11) is satisfied after a number of states, the 
situation has to be maintained . This can be possible through a 
control input which is the solution of  

0)()1(  ksks ii after having achieved 0)( ksi     (13) 

If a control is found such that,  

  0)()()1( ksksks iii  and )()1( ksks ii            (14) 

which assures both sliding motion and convergence onto the i 
th hyperplane which can be decomposed into two inequalities 
   87,6   

  0))(()()1( kssignksks iii   
  0))(()()1(  kssignksks iii                (15) 

are satisfied , then the states will hit the switching hyperplane 
from any initial conditions and will chatter around it. As a 
result we say that 0)( ks is achieved. 

A control input of the following form 
        u+(x(k))       si(k)   0 
 u(k) = { 

u- (x(k))  si(k)   0     (16) 
is evaluated by taking the above conditions in Eq.16  into 
consideration.  

In this paper, this idea of forcing the states to move on a set 
of switching planes is tried to be also applied to a discrete time 
optimal control problem where the switching plane is 
minimized which in turn results in regulating the states as 
desired by adjusting the parameters of the switching 
hyperplane matrix , C . 

II. DISCRETE TIME LINEAR REGULATOR PROBLEM  

Consider the plant 
)()()1( kuBkxAkx            (17) 

with a switching hyperplane 
)()( kxCks               (18) 

where  x(k) is the state vector of n states, u(k) is the ınput 
vector of m inputs and A is an nxn matrix, B is an nxm matrix, . 

)(ks is (mx1) vector  and C  is (mxn) matrix. 

Define the following performance index in a similar way as 
described in [9] so that the switching hyperplane is minimized 
in an optimal fashion.  
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
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N iuiRiuisisJ

1

))1()1()1()()(         (19) 

We begin by defining NV to be the minimum value of the 

performance measure NJ  as follows as described in ; 

 





N

i

TT

Nuuu
N iuiRiuisisV

1
)1()....1()0(

)1()1()1()()(min  

                         (20) 
Using the principle of optimality, we proceed by starting 

with the last stage of control in our problem. 

 )1()1()1()()(min
)1(

1 


NuNRNuNsNsV
TT

Nu
        (21) 

where  
)()( NxCNs    

)1()1()(  NBuNxANx           (22) 

Upon substitution in Eq.22, we obtain  
 )1()1()(  NBuNxACNs   

Then, V1  becomes 
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If we drop the time argument for simplicity,  




CAxCBuCBuCAxCAxCAxV
TTTTTTTTT

Nu
(min

)1(
1     

 )RuuBuCCBu
TTTT             

Denote CCQ
T , it is easily seen that Q  is automatically 

a positive semidefinite symmetric matrix,  




QAxBuQBuAxQAxAxV
TTTTTT

Nu
(min

)1(
1  

uRQBBu
TT )(              (23) 

Since Q is symmetric, 

QBuAxBuQAxQAxBu
TTTTTTTT )(  

Then, the third term in Eq.23   is the transpose of the 
second term. Since both are scalars, the two terms are equal. 
Therefore, we write 

))(2(min
)1(

1 uRQBBuQBuAxQAxAxV
TTTTTT

Nu



     (24) 

We obtain the minimum in Eq.24 by setting the gradient of 
the terms with respect to u equal to zero. Then, we have 

0)(22  RQBBuQBAx
TTTT  

Solving for u we see that  

0)1()()1( 1  
NxQABRQBBNu

TT       

As it is seen, if R is selected as a positive definite matrix, 
the resulting control law is physically realizable and 
additionally is linear and involves feedback of the current state. 

We define 

QBRQBBNL
TT 1)()1(         

Then,  
)1()1()1(  NxNLNu       

As the reader will readily recall, in the discrete time 
optimal regulator problem, the following performance measure 
is selected 9.  





N

i

TT
N iuiRiuixiGixJ

1

))1()1()1()()()(         (25) 

For the plant in Eq.17, if we evaluate V1 for the above JN , 
it becomes  

))(2(min
)1(

1 uRQBBuGBuAxGAxAxV
TTTTTT

Nu



 

This is the same as Eq.24 with the exception that G is 
replaced by Q which is the product of the switching 
hyperplane matrix by its transpose. i.e CCT. The design 
approach is different in our case. Rather than selecting G being 
at least  a positive semidefinite matrix and selecting a 
performance index as in Eq.25 which is to regulate the states, 
we attempt to minimize the switching plane resulting in a new 
desired system dynamic and force the system states in a region 
where the system is less sensitive to plant parameter variations 
and external disturbances. If we continue to derive the 
performance measure for the N-stages, we get the following 
equations. 

)()()( kxkLku   

  AkWBRBkWBkL
TT )1()1()(   

)()()1()1()( kQkBLkWAAkWAkW
TT   for k=N-1, 

N-2, ......... 0. 
where 

)()( NQNW   

RBkWB
T  )1(    is required to be positive definite for all 

k.  
 

III. CONTINUOUS TIME LINEAR REGULATOR 

PROBLEM  

In this section, we consider one class of optimal control 
problem, the linear regulator problem, in which we shall 
employ the VSS theory by selecting a performance measure by 
which the switching plane is tried to be minimized, which in 
turn results in state regulation in a region where there is 
insensitivity to parameter variations and external disturbances.  
Namely, the same idea followed in the previous section is 
followed here and applied to a continuous time linear regulator 
problem. The plant to be considered is described by the 
continuous-time linear state equations given below ; 

)()()( tuBtxAtx 


              (26) 

)()( txDty   

The performance measure to be minimized is selected in a 
similar way as described in [9] as follows ; 

 dttutRtutstststsJ
TT

t

ff
T )()()()()(

2

1
)()(

2

1

0
     (27) 

The physical interpretation of this performance measure is 
that the switching plane is reached and minimized without an 
excessive expenditure of control effort, which in turn results in 
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regulating the states in a region where the system is insensitive 
to parameter variations and external disturbances.  Besides, the 
minimization of the switching hyperplane is achieved without 
chattering. One way to solve the above minimization problem 
is to select the Hamiltonian equations as follows; 

   )()()(
2

1
)()(

2

1
),(),(),( tutRtutststtptutxH

TT  

)()()()()()( txtBtptxtAtp
TT            (28)  

where   

)()()( txtCts
T   

Then, the optimal control which minimizes the above 
Hamiltonian can be found by using the parallel approach 
defined in 9 as follows ; 

)()()( 1
txtKBRtu

T             (29) 




)()()()()()( tCtCtKAtAtKtK
TT  

)()()()()( 1
tKtBtRtBtK

T         (30) 

where )(tK  is the gain matrix and can be evaluated as 

described in 9. This is a slight modification to the original 
linear regulator problem and the control input evaluated by this 
approach facilitates the robust properties of VSS.  
 
IV. STOCHASTIC CONTINUOUS TIME LINEAR 

REGULATOR PROBLEM 

In the previous cases, it is assumed that all the states are 
available. This assumption may not be valid in practical 
applications. Furthermore, the processes may be stochastic. In 
such cases, one method is to estimate the states and use the 
estimated values of the states to evaluate the switching plane 
value, which is in fact the estimated value of the switching 
plane. To apply this idea, we extend the idea to the 
minimization of the estimate of the switching plane as 
described in the following paragraphs.  

We consider  the following system , 

)()()()()( twtGtuBtxAtx 


          (31) 

)()()( tvtxHty   

The stochastic processes { 0),( tttw  }and { 0),( tttv   } 

are assumed to be zero mean Gaussian white noises with  

  )()()()(   ttQwtwE
T  

  )()()()(   ttRwtwE
T  

and  

  0)()( T
vtwE  

for all 0, tt   where all the terms have been defined 

previously .  
If a sliding mode control which satisfies  

0)()( tsts


  

where )()( txCts  as described in Eq. 7  is applied to the 

above system ,the system after a certain time moves on the  
switching plane 0)( ts  

The equivalent control can be found as follows,  

 )()()()( 1
twGCtxACCBtueq    

Upon substitution into the original system equations, Eq.31, 
the new dynamic is obtained as follows, 

  )()()()( 1
twGCtxACCBBItx n  


 

For the total disturbance rejection, the switching plane matrix 
must be chosen such that  

  0)( 1  
CGCCBBIn  

This gives  

  )()()( 1
tAxCCBBItx n




           (32) 

Then, the desired motion is achieved by adjusting the 
coefficients of C.  

Rather than selecting a sling mode control , the switching 
plane may try to be minimized , which in fact enables the 
regulation of s(t) and achieves s(t) = 0 . Then, the system states 
move on the switching plane resulting in a new and desired 
dynamic according to the selection of the switching 
hyperplane with minimum control effort. To achieve this 
purpose, the following performance measure to be minimized 
is selected as follows ; 

 






   dttuttutstststsEJ

TT
t

ff
T )()()()()()()(

0
(33)

E {s(t)} = E {s(t/t)} : Expected value of the switching 
hyperplane given all the measurements up to t.   

If a control input is found to minimize the expected value 
of the above switching plane, then the expected values of the 
states will be forced to move in a region where we have the 
robust properties of the VSS, while at the same time, the 
estimated states are regulated in an optimal fashion. Thus, If 

)()( txCts  is substituted in the above performance index for 

s(t), the following equivalent performance index is obtained. 

  



  dttxCCtxEtxCCtxEJ

t
TT

f
T

f
T

0
)()()()(  





   dttuttuE

T
t

)()()(
0

          (34) 

If the similar steps described in 10 are followed, the 
optimal control for the continuous stochastic linear regulator 
problem can be found to be characterized by the set of 
following relations,  

)/()()( ttxtLtu   

)()()( 1
tWtBtL

T  

)()()()()( 1
tCtCtWtBWBWAWAtW

TTT  


 

  )()/()()()()/()/( tButtxtHtztKttAxttx 


 

It is interesting to note that in the classical VSS the 
measurement of the output is not taken into consideration and 
it is assumed that all the system states are assumed to be 
available. In the approach explained above, it is clear that the 
output measurement is taken into consideration.  
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V. STOCHASTIC DISCRETE TIME LINEAR 

REGULATOR PROBLEM 

We can extend the same argument to the discrete time 
stochastic linear regulator problem by following the parallel 
approach studied in the previous paragraphs.  

We again select the following performance index for the 
similar reasons discussed in the previous paragraphs. 

 













 


N

i

TT
N iuiRiuisisEJ

1

)1()1()1()()(  

If the similar steps described in 10-[11] are followed for a 
plant in Eq.17, the optimal control for the discrete time 
stochastic linear regulator problem can be found to be 
characterized by the following set of relations: 

)/()()( kkxkLku   

  AkWBRBkWBkL
TT )1()1()(

1



 

 
L(k) = - BT W(k+1) B + R -1 BT W(k+1) A 

)()()1()1()( kQkBLkWAAkWAkW
TT  for k=N-1, 

N-2, ......... 0. 
where 

)()( NQNW   

RBkWB
T  )1( is required to be positive definite for all k.  












1/()()()()1/()/( kkxkHkzkKkkxkkx  

)1()1/1()1/( 


kuBkkxAkkx  

where K(k) is the Kalman gain matrix described in  10-[11]. 
 

 
V.CONCLUSION 
 
The most favorable aspect of variable structure controller is 

that the new resulting system dynamic is insensitive to plant 
parameter variations and external disturbances. However, the 
control input may have a high frequency component due to the 
high speed chattering which is not a desired behavior and may 
have an effect similar to noise. Besides , the parameters of the 
switching hyperplane are chosen such that the states stay on 
the switching hyperplane and does not consider the amount of 
control effort .Therefore, the resulting control may be an 
excessive control input that may not be available due to the 
constraints on the control input. In this paper, the robust 
properties of VSS sliding mode control is extended to the 
conventional state regulation problem. We see that the states 
of the system can be regulated in an optimal fashion since we 
found an optimal control input which minimizes the switching 
hyperplane without using a sliding mode control . Here, we 
also remove the disadvantages of high frequency chattering 
when sliding mode control input is used.  This approach 
facilitates the design of a more robust optimal control regulator 
by combining and facilitating the use of VSS theory. In 

practical applications, the system states are random. Therefore, 
the estimated states can only be used in the evaluation of the 
switching hyperplane. Therefore, the theory is also extended to 
cover the stochastic cases.   
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