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Abstract—In this paper, a robust fuzzy model predictive
control (MPC) strategy was proposed for leading to promote
a comfortable micro-climate for the plants growth inside a
greenhouse. Based on Takagi-Sugeno (TS) fuzzy model and
a non-parallel distributed compensation (non-PDC) fuzzy
controller, the MPC problem can be reduced to sufficient
conditions expressed as linear matrix inequalities (LMIs).
To show the merit of the applied method against external
disturbances and model parameter uncertainties, several
simulation experiments were performed.

KeyWords: model predictive control; Takagi-sugeno fuzzy
model; non-parallel distributed compensation; linear matrix
inequalities; greenhouse micro-climate.

I. INTRODUCTION

A greenhouse is an enclosure that used to improve the autonomous
crops cultivation process. Generally, it allows the creation of a
favorable inside micro-climate to crop development and protects
it from weather conditions changing. The simple structure of
the greenhouse, represented in a thin film cover, allows a good
exchange of energy and mass balance but creates a strong interaction
between inside and outside environments. Moreover, greenhouses
are considered as time-varying systems because they never stay as
initially designed [1]. Regarding these difficulties, controller design
for the greenhouse micro-climate management must deal with the
system nonlinearity, disturbance rejection and uncertainties due to
modeling mistakes and imperfect measurements.

In recent years, it has shown that control plays a very important
role in greenhouse systems. However, many greenhouses use
conventional controllers such as on-off and PID controllers
[2]. But these control strategies may not be able to guaranty
the desired performances due to highly nonlinear characteristic
and strong coupling of the greenhouse variables [3]. Thus, in
order to improve the quantity and quality of the greenhouse
crops product, several advanced control strategies have been
proposed in various control synthesis such as optimal control
[4]. Intelligent and soft computational based controllers such as
fuzzy systems, Neurocomputing, and evolutionary algorithms [5],
[6], [7]. Advanced techniques like predictive [8], adaptive [9],
[10]. Recently, robust control is gaining popularity in greenhouse
micro-climate control system due to its ability in guaranteeing good
performance in spite of modeling uncertainties and disturbances [11].

In this paper, a model predictive control based on a fuzzy model
is considered. Firstly, a T-S fuzzy model is developed to deal
with greenhouse nonlinearity. For this purpose, the global model is
divided into local linear models blended using weighed functions.

Fig. 1. Greenhouse system.

Secondly, Based on a non-PDC control law, a model predictive
controller (MPC) is designed to deal with the system uncertainties
and external disturbances. The constrained optimization problem of
MPC is formulated by LMI constraints. The effectiveness of the
proposed method was revealed through experiment simulation and
statistical calculations.

The rest of the paper is organized as follows. In Section 2,
the nonlinear dynamic model and the T-S fuzzy modeling of the
greenhouse are presented. Then, in Section 3, the nonlinear MPC
based on T-S fuzzy model formulation is given. In Section 4, the
simulation result of the proposed control method on the greenhouse
is illustrated. Finally, Conclusions are given in Section 5.

II. GREENHOUSE PHYSICAL MODEL AND T-S MODELING

A. Physical model
An analytic model is considered to describe the dynamic behavior

of the greenhouse. Based on the heating-cooling ventilating model,
a greenhouse climate dynamic model was developed in [12] Fig. 1:

Tin(k + 1) =
1

ρCpVT
(Qheat(k) + Si(k)− λQfog(k))

− Vr(k)

VT
(Tin(k)− Tout(k))

− UA

ρCpVT
(Tin(k)− Tout(k)) (1a)

RHin(k + 1) =
1

VH
Qfog(k) +

1

VH
(E(Si(k), RHin(k)))

− Vr(k)

VH
(RHin(k)−RHout(k)) (1b)
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E(Si(k), win(k)) = α
Si(k)

λ
− βTwin(k) (1c)

Where the output variables are: inside temperature Tin(̊C) and
inside relative humidity RHin in (%). The input variables that can
be manipulated are heating control Qheat(W ) , water capacity of
the fog system Qfog(gH2Os

−1) and ventilation rate Vr(m3s−1).
Measurable perturbations are: solar radiation intercepted by the
greenhouse Si(Wm−2), outside temperature Tout(̊C) and outside
relative humidity RHout(%). UA is the heat transfer coefficient of
enclosure (WK−1), ρ is the air density (1.2kgm−3), Cp is the
specific heat of air (1006Jkg−1K−1), E(Si, RHin) denotes the
evapo-transpiration rate of the plant (g/s), which is affected by the
given solar radiation, λ is the latent heat of vaporization (2257Jg−1),
α and βT are lump parameters, VT and VH are the temperature
and humidity active mixing air volumes of a ventilated space (m3),
respectively.

By transforming the control variables through these equations
Qheat,% = 100 ∗ Qheat/Qmaxheat, Qfog,% = 100 ∗ Qfog/Qmaxfog ,
Vr,% = 100 ∗ Vr/V maxr , the model described by equations (1a) and
(1b) can be normalized. Then, the dynamic model of the greenhouse
can be expressed as:{

x(k + 1) = Ax(k) +Bu(k) +Dd(k)

y(k) = Cx(k)
(2)

A =

[
UA

ρCpVT
0

0 βT
VH

]

B =

[
1

ρCpVT

−λ
ρCpVT

1
VT

(Tin(k)− Tout(k))

0 1
VH

1
VH

(Hin(k)−Hout(k))

]

C =

[
1 0
0 1

]
D =

[
1

ρCpVT

−UA
ρCpVT

0
z1
λVH

0 0

]

and the state vector x = [x1, x2]T = [Tin, Hin]T , the input vector
u = [u1, u2, u3] = [Qheat,%, Qfog,%, Vr,%] and the disturbance
vector d = [d1, d2, d3]T = [Si, Tout, Hout]

T .
In order to obtain the best possible performance from this highly

nonlinear system, the following sub-section gives a T-S fuzzy repre-
sentation of (2)

B. T-S fuzzy model

In above model, the nonlinear terms are 1
VT

(Tin(k) − Tout(k))

and 1
VH

(Hin(k) − Hout(k)), and the variables in the
greenhouse are assumed varying in the operating range
Tin,min ≤ Tin ≤ Tin,max and Hin,min ≤ Hin ≤ Hin,max.
For the nonlinear terms, we define z1(k) = 1

VT
(Tin(k) − Tout(k))

and z2(k) = 1
VH

(Hin(k) − Hout(k)), then, for every instance
the minimum and the maximum of z1 and z2 can be obtained,
z1 ≤ z1 ≤ z1 and z2 ≤ z2 ≤ z2. The simplified expressions can
be written as follow: z1(k) = M1

1 (z1(k))z1 + M1
2 (z1(k))z1

and z2(k) = M2
1 (z2(k))z2 + M2

2 (z2(k))z2, where
M1

1 (z1(k)) + M1
2 (z1(k)) = 1 and M2

1 (z2(k)) + M2
2 (z2(k)) = 1.

Therefore the membership functions can be calculated as:

M1
1 (z1(k)) =

z1(k)− z1

z1 − z1
,M1

2 (z1(k)) =
z1 − z1(k)

z1 − z1

and

M2
1 (z2(k)) =

z2(k)− z2

z2 − z2
,M2

1 (z2(k)) =
z2 − z2(k)

z2 − z2

Consequently the nonlinear system (2) can be represented by the
following four IF-THEN rules:
If z1(k) is M1

1 and z2(k) is M2
1 Then{

x(k + 1) = Ax(k) +B1u(k) +Dd(k)

y(k) = Cx(k)

If z1(k) is M1
1 and z2(k) is M2

2 Then{
x(k + 1) = Ax(k) +B2u(k) +Dd(k)

y(k) = Cx(k)

If z1(k) is M1
2 and z2(k) is M2

1 Then{
x(k + 1) = Ax(k) +B3u(k) +Dd(k)

y(k) = Cx(k)

If z1(k) is M1
2 and z2(k) is M2

2 Then{
x(k + 1) = Ax(k) +B4u(k) +Dd(k)

y(k) = Cx(k)

Then the equivalent T-S fuzzy model isx(k + 1) =

4∑
i=1

hi(z(k))(Ax(k) +Biu(k) +Dd(k))

y(k) = Cx(k)

where
h1(z(k)) = M1

1 (z1(k))M2
1 (z2(k))

h2(z(k)) = M1
1 (z1(k))M2

2 (z2(k))
h3(z(k)) = M1

2 (z1(k))M2
1 (z2(k))

h4(z(k)) = M1
2 (z1(k))M2

2 (z2(k))

III. CONSTRAINT MODEL PREDICTIVE CONTROL

A. Cost function
Let us consider the following problem, which minimizes the

following objective function in an infinite horizon [13]

min
u(k+h|k)=K(k)x̃(k+h|k)

max
h>0

J∞(k) (3)

J∞(k) =

∞∑
h=0

‖ x(k + h|k) ‖2Q + ‖ u(k + h|k) ‖2R (4)

where Q > 0 and R > 0 are both known symmetric weighting
matrices. The above performance objectif function is subject to the
following constraints, umin ≤ u(k + h|k) ≤ umax and ymin ≤
y(k + h|k) ≤ ymax.

B. Discret T-S fuzzy model
In this work, a T-S fuzzy model with r-rules is employed to

describe the dynamics of the discrete-time nonlinear system.
Rule i: IF z1(k) is M i

1, and z2(k) is M i
2, and . . . and zΘ(k) is M i

Θ,

THEN
{
x(k + 1) = Aix(k) +Biu(k)

y(k) = Cix(k) i = 1, ..., r

With T-S fuzzy discrete time model
x(k + 1) =

r∑
i=1

hi(z(k))Aix(k) +Biu(k)

y(k) =

r∑
i=1

hi(z(k))Cix(k) i = 1, ..., r

(5)
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And Ai, Bi and Ci are states matrices of system.

C. Fuzzy non-PDC control law
The non-PDC law presented in [14] is used in this section, and is

given as:

u(k) = −

(
r∑
j=1

hj(z(k)Fj

)(
r∑
j=1

hj(z(k))Gj

)−1

x(k) (6)

Substituting (6) in (5), the closed loop system is given as follows:

x(k + 1) = (Az −BzFzG−1
z )x(k)

y(k) = Czx(k)
(7)

where
Az =

∑r
i=1 hi(z(k))Ai, Bz =

∑r
i=1 hi(z(k))Bi,

Cz =
∑r
i=1 hi(z(k))Ci, Fz =

∑r
i=1 hi(z(k))Fi, and

Gz =
∑r
i=1 hi(z(k))Gi,

Theorem 1: Consider that the system states x(k/k) are measured
at each sampling time k. The closed-loop discrete-time fuzzy system,
given by (7), is globally asymptotically stable if there exist positive
definite matrices Sij > 0, Υij , Fj , Gj , Xii > 0 and Xij = XT

ij

such that the following LMIs are satisfied:

min
Ŝij ,Fj ,Gj ,Xij ,H

γ (8)[
−γ xT (k/k)

x(k/k) −Ŝij

]
< 0 (9)

Υii > Xii, i ∈ S (10)

Υij + ΥT
ij > Xij +XT

ij , i 6= j, j ∈ S (11)

Xl =

 2X11 · · · X1r +XT
m1

...
. . .

...
Xm1 +XT

1m · · · 2Xmm

 > 0 (12)

[
−Z −Fj
−FTj Ŝji −GTj −Gj

]
< 0

with Z(hh) < u2
h,max, h = 1, 2, ..., p

(13)

[
−Uj (AjGi −BjFl)

(AjGi −BjFl)T Ŝji −GTi −Gi

]
< 0, i, j, l ∈ S (14)[

−W CjH
T

HCTj Uj −H −HT

]
< 0

with W(hh) < y2
h,max, h = 1, 2, ..., q

(15)

where

Υij =


Υ11 Υ12 −FTr R0 GTl Q0

ΥT
12 Ŝij 0 0

−R0Fl 0 R0 0
−Q0 0 0 Q0


with i, j, l, r ∈ S
and Υ11 = Gi +GTi − Ŝij , Υ12 = (AjGl −BjFr)T

The proof detail is given in [14].

Remark 1 : In most application, a regulation task is required.
However, in Theorem 1, only stabilization conditions are derived
based on the cost function (4). In order to force the system state
x(k/k) to follow a constant non-zero reference signal r, the following
cost function should be minimized:

J∞(k) =
∞∑
h=0

‖ x(k + h|k)− r(k) ‖2Q + ‖ u(k + h|k) ‖2R (16)

By following the same method as given in Theorem 1, the control
law will be as:

u(k) = −

(
r∑
j=1

hj(z(k))Fj

)(
r∑
j=1

hj(z(k))Gj

)−1

x(k)− r(k)

(17)

IV. SIMULATION RESULTS

In the following, a greenhouse micro-climate control simulations
are given. These simulations were carried out using the greenhouse
model (1). The heating, the fogging and the ventilation systems are
considered as the control inputs, while the state variables are the
inside temperature and the inside humidity. The outside radiation,
the outside temperature, and the outside humidity are considered as
the main surrounding external disturbances that widely influence the
greenhouse dynamics Fig. 1.
To avoid stresses to the plants, the inside temperature and humidity
must be bounded by minimum and maximum, the operating range
of the inside temperature is 0 ≤ Tin ≤ 40̊C and the operating range
of the inside humidity is 0 ≤ Hin ≤ 100%. Then the T-S fuzzy
model of the nonlinear system (2) is as follows:

B1 =

[
1

ρCpVT

−λ
ρCpVT

z1(k)

0 1
VH

z2(k)

]

B2 =

[
1

ρCpVT

−λ
ρCpVT

z1(k)

0 1
VH

z2(k)

]

B3 =

[
1

ρCpVT

−λ
ρCpVT

z1(k)

0 1
VH

z2(k)

]

B4 =

[
1

ρCpVT

−λ
ρCpVT

z1(k)

0 1
VH

z2(k)

]
Then the equivalent T-S fuzzy model isx(k + 1) =

4∑
i=1

hi(Ax(k) +Biu(k) +Dd(k))

y(k) = Cx(k)

where [
y1(k)
y2(k)

]
=

[
1 0
0 1

]
x

Hence, disturbances are measurable, the above system can be aug-
mented to the following form:

x̃(k + 1) =

4∑
i=1

hi(Ãx̃(k) + B̃iu(k)) (18)

where
Ã =

[
A D
0 1

]
, B̃i =

[
Bi
0

]
The control objective to achieve is the best tracking of the greenhouse
micro-climate in the presence of the model uncertainties and widely
varying external disturbances. In the same time, constraints imposed
by control actuators limitation must be considered. In all cases,
the reference signal applied for the temperature is the external
temperature plus an offset of 5̊C and for the humidity is the external
humidity plus an offset of 15%. The optimization problem at each
step is solved using YALMIP toolbox [15], under MATLAB software.
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Fig. 2. Performance of the greenhouse micro-climate control tracking with
modeling uncertainties

First experiment simulation, no uncertainties were added to the
process parameters and only the external disturbances were consid-
ered. As illustrated in Fig. 2a, the system can follow the temperature
and humidity under reference signals with high performance with
a maximum deviation from the reference signals of 0.6̊C for the
inside temperature and 1% for the inside humidity. Fig. 2b shows
the control signals. In the second simulation, to further challenge the
proposed method and in order to show the robustness of the applied
controller against the changes in system parameters, a variation of
10% was applied to the greenhouse parameters. Fig. 2a shows the
good track of the reference signals with a maximum deviation of
1̊C for the inside temperature and 1.5% for the inside humidity. To
more determine the effectiveness of the used method, two common
error measurement criteria, i.e., Sum of the Squared Errors (SSE) and
Mean Square Error (MSE) were calculated and given in Table I.

V. CONCLUSION

In this work, a fuzzy model predictive controller has been proposed
for temperature and humidity regulation in a greenhouse, taking

TABLE I
PERFORMANCE OF THE PROPOSED METHOD AGAINST MODELING

UNCERTAINTIES AND EXTERNAL DISTURBANCES.

Without uncertainties With uncertainties

Criteria Temperature Humidity Temperature Humidity

SSE 10.7124 7.3284 13.0955 9.3565
MSE 0.0186 0.0127 0.0227 0.0162

into account the external disturbance and modeling uncertainties.
Based on the non-PDC strategy and T-S fuzzy modeling, the control
action can be given at every sampling time. Results have shown the
effectiveness of the proposed controller on tracking the reference
signals subject to input-output constraints.
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