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Abstract— Modified extend least-squares parameter estimation 
algorithm is derived for the special case of ARMAX model 
identification algorithm. In this method, identification algorithm 
transform into two sub problems with smaller sizes is used. 
System identification model and noise identification model. The 
proposed algorithm has high computational efficiency because 
the dimensions of its covariance matrices become small. Also, 
residual generation and evaluation are computed. In simulation, 
the estimation error of standard recursive least algorithm and 
two stage extended least squares algorithm are calculated and 
plotted. the figure shows effectiveness of the proposed algorithm. 
Next, parameters is estimated using of modified extended least 
squares algorithm to show the accuracy of the method. Finally, 
residual is generated and threshold is designed to detect the 
fault. The figures indicate that the proposed algorithm is 
sensitive to the faults. 
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I. INTRODUCTION 

In systems and control theory, models generally contain a 
number of parameters which are unknown or roughly known. 
A complete knowledge of these parameters is critical to 
describe and analyse the dynamics of real-world systems. 
Also, advanced control and diagnosis algorithms for modern 
industrial, automotive, and aerospace systems require the 
accurate knowledge of system parameters. Any control or 
diagnosis algorithm with poor parameter estimates will have 
poor performance and could also become unstable. Online 
parameter-estimation schemes allow these algorithms to have 
accurate parameter estimates even when subjected to 
perturbations. Several methods have been used previously to 
solve the problem of parameter estimation. Adaptive 

output signals, u(t ) and y(t ), if the basic structure of the 
model is known . This approach is based on the assumption 
that the faults are reflected in the physical system parameters 
and the basic idea is that the parameters of the actual process 
are estimated on-line using well-known parameter estimations 
methods. The results are thus compared with the parameters 
of the reference model, obtained initially under fault free 
assumptions. Any discrepancy can indicate that a fault may 
have occurred [2]. However, the presence of modeling 
uncertainties, disturbances, and noise is inevitable. Now, 
instead of setting deviation of residual from zero as indicator 
of faults, a threshold which cares for the effect of modeling 
uncertainties, disturbances, and noise should be selected and 
if the residual exceeds the selected threshold, it gives an 
indication of the presence of faults. Selection of threshold is 
important for a fault detection system. If threshold is selected 
too low, it will result in false alarms, i.e. some of disturbances 
will cause the residual to cross the threshold and result in an 
alarm. If the threshold is selected too high, small faults will 
not be detected [3].    In this paper, the focus is put on the 
study of the modified extended recursive least squares 
algorithm. This paper is organized as follows. In Section 2, 
model identification of the autoregressive model is described. 
Section 3, modified extended recursive least squares 
algorithms (M-ELS) is derived. Residual generation and 
evaluation are discussed in Section 4. while the simulation 
results is presented in section 5. Section 6 concludes the 
paper. 

II. MODEL IDENTIFICATION OF THE AUTOREGRESSIVE MODEL 

The basic step in identification procedure is the choice of 
suitable type of the model. General linear model takes the 
following form, called (a special case of ARMAX model): 

estimations using Kalman filters, recursive least squares and 
sliding-mode estimators are among the frequently used 
techniques [1]. Parameter Estimation Techniques is one class 
of the methods of model-based fault detection. A model- 
based fault detection scheme consists of two main stages: 
residual generation and residual evaluation. In most practical 

A(z 1) y(k)  B(z 1)u(k)  D(z 1)n(k) 
where 

A(z 1)  1 a1z 1  a2 z
2 ... an z

n 

B(z 1)  b1z1  b2 z
2 ... bn z n 

(1) 

cases, the process parameters are not known at all, or they are 
not known exactly enough. Then, they can be determined by 
means of parameter estimation methods, measuring input and 

D(z1)  1 d1z1  d2 z 2 ... dn z
n (2) 
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A(z) 

n



s s 

 
are shift operators polynomials is introduced as order system for k data entries. Then, the estimate of the 
z i y(k)  y(k  i) , Where y(k), u(k), n(k) are the sequences parameter   vector ̂ (k 1) for (k 1) data   entries,   with 
of system output, measurable input and stochastic input, or 

noise, respectively, while the constants ai , b j , ci and di 

represent system parameters [4]. 

(k  1,2,3,...) is given by the expression [6]. 

ˆ(k)  ˆ(k 1)   (k)[ y(k)  Z T (k)ˆ(k 1)] 
The correcting vector is given by 

 
 

(9) 

v(k) 
   

 (k)  P(k)Z(k) =[ZT (k)P(k 1)Z(k) 1]1ZT (k)P(k 1) (10) 

And the matrix P(k) is calculated from the recursive formula 

P(k) [I   (k)ZT (k)]P(k 1) 
With initial conditions 

(11) 

u(k) 
P(0)  I and  (0)  0 (12) 

 
 

 
 
 

Fig. 1 Model structure for ARMAX system 

All linear models can be derived from general linear model 
by simplification. For special cases of the system in (2), many 
approaches can estimate their parameters. For example, when 

III. MODIFIED-EXTEND LEAST-SQUARES PARAMETER 

ESTIMATION ALGORITHM (M-ELS) 
To derive the special case of ARMAX model identification 

algorithm represented by (1), the decomposition technique 
that transform the original identification problem into two sub 
problems with smaller sizes is used .First sub problems is 
system identification model and second sub problems is noise 
identification model. A System identification model is 

(C=D=1), the system in (2) reduces to an equation error n n 

model, or called ARX model (Auto-Regressive model). ys (k)  ak y(k  i)  bk u(k  i) (13) 
A(z 1) y(k)  B(z 1)u(k)  n(k) (3) i1 i1 

The recursive parameter estimation algorithms are based on 
the data analysis of the input and output signals from the 
process to be identified. This method can be used for 

Equation (13) can be written in a linear regression form 

ys (k)  ZT (k) (14) 
Where ,   a , a ,...a ,b ,b ,...,b T is vector of constant 

parameter estimate of ARX model. The algorithm can be s 1     2 n     1     2 n 

written in following form: Consider linear, time-invariant, 
discrete-time system, which can be represented by 

system parameters and the regression vector or information 
vector is 

n n ZT (k)  [y(k 1)... y(k  n), u(k 1)...u(k  n)] . 
y(k)  ak y(k  i)  bku(k  i)  n(k) (4) s 

i1 i1 The noise identification model is 
Equation (4) can be written in a linear regression form 

y(k)  ZT (k)  n(k) 
where 

 
(5) 

v(k)  D(z1)n(k) or (15) 

n 

T  [a ...a ,b ...b ] 
 

(6) v(k)  dk n(k  i)  n(k) (16) 
1 n    1 n 

i1 

Represents vector of constant system parameters and the linear regression form is 

ZT (k)  [ y(k 1)... y(k  n) u(k 1)...u(k  n)] (7) v(k)  ZT (k)n  n(k) (17) 
Represents a vector of input and output measurable samples where, ZT (k)  [n(k 1)...n(k  n)] and     d , d ...,d T . 

n n 1     2 n 

(the regression vector) and the residual 

as[5]. 

v(k) is introduced by substituting (15) and (17) into (2), equation (2) can be 
written as [4]. 

n(k)  y(k)  ZT (k) (8) y(k)  ZT  ZT (k)  n(k)  ZT  n(k) (18) 
In many practical cases, it is necessary that parameter 
estimation takes place concurrently with the system’s 

s    s n n 

where ,  ZT   ZT    ZT 

 and   

s 
operation. This parameter estimation problem is called on- 
line identification and its methodology usually leads to a 
recursive procedure for every new measurement (or data 
entry). For this reason, it is also called recursive least-squares 
estimate (RLS) or recursive identification. The proposed 
recursive algorithm is given by the following theorem. 

Suppose that ˆ(k) is the estimate of the parameters of the nth 

s n  
  n 

Because the information vector Zn (k) in ZT (k) on the right- 
hand side of equation (18) contains immeasurable noise terms 
n(k  i). the standard recursive least squares algorithm as (9) 
cannot generate the estimate of the parameter vector  . The 
solution is to replace these immeasurable variables n(k  i) 
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s

s

f

1

1 

f

n n 

in    Zn (k)   )   of   ZT (k) with   their   estimates n̂(k  i)   , n (k)  Pn (k)Zn (k) = 
respectively, and define [7]. [ZT (k)P (k 1)Z  (k) 1]1ZT (k)P (k 1) (31) 

 
Ẑ T (k)  [n̂(k 1)...n̂(k  n)] 

n n n n n 
 (19) T 

n 
 

Then Ẑ T   ZT Ẑ T , and after system parameters ̂ (z)  be 
Pn (k)  [I   n (k)Zn (k)]Pn (k 1) (32) 

s n u f (k) , y f (k) , Z f (k) and Zn (k) are unknown because of 
estimated, the estimate  v̂(k) can be computed by 

v̂(k)  y(k)  ZT (k)̂  (k) 

 
 

(20) 

the polynomials D(z) are unknown. So it is impossible to 

implement the algorithm in (26)–(32) . 
s s The derivation of modified extended recursive least squares 

The goal is to apply the data filtering technique and to 
develop a new recursive least squares for estimating the 

(M-ELS) identification algorithms is to replace the unknown 
variables with their estimate to as 

system parameters. If we use the rational fraction 
1 

 
 

D(z) , the v(k)  A(z) y(k)  B(z)u(k)  y(t)  ZT (k)s (33) 

recursive least squares algorithm can be applied. Because Substituting (17) into (33),we get 
1 

is unknown, its estimate 
1 

is used to  filter the 
 

  

y(k)  ZT (k)s  v(k)  ZT (k)  n(k) (34) 

D(z) D̂ (z) Replacing s on equation (33) with its 
input–output data [8]. For the model in (2), the filtered inputs estimate ̂  (k 1) and v̂(k)  y(t)  Z T (k)̂   (k 1) .  Also  the 

s s s 

u f (k) , the filtered output y f (k) and the filtered regression 

vector Z f (k) are defined as 
estimate  v̂(k) is  n̂(k)  v̂(k)  Ẑ T (k)̂   (k 1) . The parameter 
estimation of the noise model is 

u (k)  
   1    

u(k) , y (k)  
   1    

y(k) (21) ̂   (k)  d̂  (k), d̂  (k)...,d̂ (k)T  
. Then  û (k)  

   1    
u(k) , 

f D(z) f D(z) n 1 2 nd f D̂ (z) 

ZT (k)  [ y f (k 1)    y f (k  2)... y f (k  n),  
(22) yˆ f (k)  

ˆ
 y(k) . Now, the computation of uˆ f (k) and 

u f (k 1) u f (k  2)...u f (k  n)] D(z) 

Dividing both sides of (2) by D(z) gives yˆ f (k) are 

A(z)   
1 

y(k)  B(z) 
 

1    
u(k)  n(k) 

 

 
(23) û f  (k)  d̂  (k)û f  (k 1)  d̂2 (k)û f (k  2) 

D(z) 
It can be written as 

D(z) 
...d̂ n  (k)û f  (k  n)  u(k) 

(35) 

A(z) y f (k)  B(z)uf (k)  n(k) (24) y  ̂f (k)  d  ̂ (k) y  ̂f (k 1)  d̂2 (k) y  ̂f (k  2)  
(36) 

This model is (ARX model) and can be rewritten in a linear 
regression form, 
y f (k)  [1  A(z)] y f (k)  B(z)u f (k)  n(k) 

...d̂n (k) ŷ f  (k  n)  y(k) 

and 

 ZT  n(k) (25) ZT (k)  [ yˆ f (k 1), y  ̂f (k  2),..., yˆ f (k  n) (37) 
f 

Now, we can compute the estimates ˆ and ˆ of    and , û f  (k 1), û f  (k  2),...,û f (k  n)] 

s n s Finally, when replacing Z f (k) with Zˆ 
f (k) , Zn (k) with 

n 
ˆ (k)  ˆ (k 1)   (k)[ y (k)  Z T (k)ˆ (k 1)] 

 
(26) Ẑn

 
 
(k) , 

 
y f (k) with y  ̂f 

 
(k) , and 

 
v(k) 

 
with 

 
v̂(k)  ,we  get 

s s f f f s 

The correcting vector is given by modified extended recursive least squares (M-ELS) algorithm 

 f (k)  Pf (k)Z f (k) = 
[8]. 
ˆ (k)  ˆ (k 1)   (k)[ ŷ  (k)  Ẑ T (k)̂  (k 1)] 

 
(38) 

[ZT (k)P  (k 1)Z (k) 1]1ZT (k)P  (k 1) s s (27) f f f s 
f f f f f The correcting vector is given by 

And the matrix Pf (k) is calculated from the recursive  f (k)  Pf  (k)Ẑ 
f  (k) = 

formula [ẐT (k)P  (k 1)Ẑ   (k) 1]1ẐT (k)P  (k 1) (39) 
P (k)  [I    (k)ZT (k)]P (k 1) (28) f f f f f 

f f f f And the matrix   P (k) is calculated from the recursive 
With initial conditions f 
Pf (0)  I   and  (0)  0 (29) formula 
With   large (  100,...1, 000) Pf  (k)  [I   f (k)Ẑ T (k)]P  (k 1) (40) 

 
ˆ (k)  ˆ (k 1)   (k)[v (k)  Z T (k)ˆ (k 1)] 

f f 
 (30) T 

n n n n n n ˆ (k)  ˆ (k 1)   (k)[vˆ (k)  Zˆ (k)ˆ (k 1)] (41) 
n n n n n n 

1
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s

1 1s 2 n 2 

 
 n (k)  Pn (k)Ẑn (k) = 
[ẐT (k)P (k 1)Ẑ  (k) 1]1ẐT (k)P (k 1) 

n n n n n 

P (k)  [I    (k)ẐT (k)]P  (k 1) 
n n n n 

v̂(k)  y(t)  ZT (k)̂  (k 1) 

̂   (k)  â  (k), â 
s 

(k),...â (k), b̂ (k), b̂  (k),...,b
ˆ ˆ ˆ ˆ T 

n (k)  d1(k), d2 (k),...,dn (k) 

IV. RESIDUAL GENERATION AND EVALUATION

In order to detect and isolate faults in a system we need to
look for some fault symptoms. The most
symptom that is used for fault detection 
residual. The common procedure for fault
isolation using residuals is made of two main steps: residual
generation, and residual evaluation [9]. 

A. Residual Generation 

the residual quantities which are computed
between the measured output y(k) and the
output generated by the mathematical model

output ŷ(k) ). In theory, the residuals must be
fault free case, to indicate that no fault occurs, or non
the case of a fault. However, in practice, deviations normally
exist with different magnitudes[10]. 

e(k)  y(k)  ŷ(k) 
The fault detection system consists of two parts,
the generation of the fault detection residual and
the evaluation of the residual against a specified

B. Residual Evaluation (Decision Making)
The residual   evaluation   examines   symptoms  
likelihood of faults and a decision rule is
determine if any faults have occurred. The residual evaluation
may perform a simple threshold test (geometrical

on the instantaneous values of the residuals[12].
choice of evaluation signal is 

e(t) 

where  is the time window. 
The threshold is obtained based on the residual dynamics in a
fault-free case. For the evaluation signal
occupancy of faults can be alarmed if 
e(t)  Tr  

and 

 a fault is detected 

e(t)  Tr   no fault is detected. 

Tr is the threshold [11]. 

 
V. SIMULATION RESULTS 

In order to show the performance of the
algorithm, consider the following example 

t 

 e( ) 2 d
0 
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Sample No. 

s
n

(42) A(z 1)  1  0.2z 1  0.85z 2 

(43) B(z 1)  0.8z 1  0.55z 2 

(44) D(z 1)  1  0.3z 1 

b̂  (k)T 
 

(45) ˆ (k)  0.2,0.85,0.8,0.55T
 

ˆ (k)   0.3T
 

EVALUATION 

(46) n 

The sequence u(k) is generated

Gaussian distribution of zero mean

In order to detect and isolate faults in a system we need to 
most common fault 

 and isolation is 
fault detection and 

isolation using residuals is made of two main steps: residual 

the disturbance n(k) is generated

with zero mean and variance
parameters were estimated using modified extended recursive
least squares algorithm. Fig. 2 shows estimated parameters.
Data from n =0 to n =2500 has 

computed as differences 
the corresponding 
model (estimated 

e either zero in a 
fault free case, to indicate that no fault occurs, or non-zero in 
the case of a fault. However, in practice, deviations normally 

0.205 
0.2 

0.195 

 
-0.795 

-0.8 

-0.805 

 
-0.295 

-0.3 
-0.305 

 
500 1000 1500 2000 2500

Sample No. 
 
 
 
 

500 1000 1500 2000 2500
Sample No. 

 (47) 

parts, the first is 
and the second is 

a specified threshold[11]. 

Making) 
symptoms   for   the 

500 1000 1500 2000 2500
Sample No. 

 
Fig. 2 Estimated parameters

For more clarification, window (frame) of the 100 samples
between (1700-1800) is taken.
proposed M-ELS algorithm give accurate parameter estim

is then applied to 
residual evaluation 

(geometrical methods) 

0.202 
0.2 

0.198 
1600 1650 1700

residuals[12]. A common 
 

-0.798 
-0.8 

-0.802 

Sample No. 

(48) 
 

-0.299 
-0.3 

-0.301 

1600 1650 1700
Sample No. 

The threshold is obtained based on the residual dynamics in a 
signal in (48), the 

1600 1650 1700
Sample No. 

 
Fig. 3 Estimated parameters for (M-ELS) algorith

(1700-1800)

The estimation error is introduced
algorithm’s effectiveness. 

 : ˆ   / 

 

the proposed 

Fig. 4 shows the estimation errors versus time of standard
recursive least algorithm and modified extended least squares
algorithm. the figure shows that
errors become smaller and smaller with the time increasing.
Also, the estimation errors of
smaller than those of the RLS
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generated as a white sequence with a 

mean and unit variance, while 
generated as a white noise sequence 

variance  2  0.2 . The system 
parameters were estimated using modified extended recursive 
least squares algorithm. Fig. 2 shows estimated parameters. 

 been used. 
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give accurate parameter estimates. 
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1800) second 

introduced as a measure of the 

(49) 

Fig. 4 shows the estimation errors versus time of standard 
recursive least algorithm and modified extended least squares 

that the parameter estimation 
errors become smaller and smaller with the time increasing. 

of the M-ELS algorithm are 
RLS algorithm, which means that 
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ME-RLS parameter estimation have higher accuracy
RLS parameter estimation. 
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Fig. 4 The estimation errors  versus n (

Fig. 5 shows the residual and the threshold in
situation. 
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Fig. 5 Threshold design and residual when there

Fig. 6 shows the residual and the threshold in
As shown in Fig. 5, the threshold is sensitive
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Fig. 6. Threshold design and residual when faults have

T
h

re
sh

o
ld

 a
n
d

 R
e
si

d
u
a
l 

T
h

re
sh

o
ld

 a
n

d
 R

e
si

d
u
a

l 
E

si
m

a
tio

n
 E

rr
o
r 

    

    

    

    

    

    

    

 

International Journal of Scientific Research & Engineering Technology (IJSET)

accuracy than the 

 2000 2500 

VI. CONCLUSION

Modified extend least-squares
algorithm has been derived for a class linear, time
discrete-time system. The proposed
computational load and can give
estimates compared with the
squares algorithm. Also, The proposed algorithm can used to
estimate the parameters of linear
Finally, generate a residual and design threshold show the
effectiveness of the algorithm. 
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ONCLUSION 

squares parameter estimation 
algorithm has been derived for a class linear, time-invariant, 

proposed algorithms has less 
give more accurate parameter 

the conventional recursive least 
squares algorithm. Also, The proposed algorithm can used to 

linear and non linear systems. 
Finally, generate a residual and design threshold show the 
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