
Vol.1 pp. 14-22 International Journal of Scientific Research & Engineering Technology (IJSET) 
 

© Copyright 2013  
ISSN: 2356-5608 

 

   Bm-1 Mm    
TH Bm

 d 

 

Fuzzy Particle Swarm Optimization for 
Manufacturing Systems 

M. Bechouat#1,  S. Kahla#2 
#Labget laboratory, Department of Electrical Engineering, University of Tébessa, Algeria 

1mohcene.oui@gmail.com 
2samikahla40@yahoo.com 

 
 

Abstract— Particle Swarm Optimization (PSO) is proposed in our 
research to generate Fuzzy Controller, a fuzzy logic control (FLC) 
is proposed to control manufacturing system presented by m- 
machine line as an m-order state-space. As results indicated, use 
particle swarm optimization (PSO) method for optimizing a fuzzy 
logic controller (FLC) for manufacturing system is better than 
that of fuzzy logic control (FLC) not optimized and applying fuzzy 
keeping the production demand. 
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I. INTRODUCTION 

 
The knowledge base of a Fuzzy Logic Controller (FLC) 

contains two components, namely, a fuzzy rule base and a data 
base, both being closely related to the concept of a linguistic 
variable. A rule-base, i.e., a collection of fuzzy IF–THEN rules, 
is used to describe a particular control strategy. When the use 
of fuzzy controller able to command the manufactring systems 
remains an inconvinent, this inconvinent is represented in the 
random choice of membership functions (MFs). We can say 
that the use of fuzzy logic is based on experience. This 

 
applied for manufacturing system is proposed in [5], [7] and 
[8], where it used the genetic algorithms “GAs”, and the 
supervising to amelioration the results. In our research we use 
the particle swarm optimisation to Generate the fuzzy and 
comparison with the using the fuzzy alone. 
The control of the manufacturing system consist four 
production modules where used the fuzzy alone [4], in this 
paper the main contribution is using the particle swarm 
optimization for generate the fuzzy controller apply to 
manufactring system consist two production modules where we 
use the same parameters in [4], but the demand is “d=1”. 

 
II. PRODUCTION MODULE 

 
Consider a serial line with m machines and m-1 buffers as 

depicted in Fig.1. The line produces only one part type; a 
constant production demand rate “d” is given. 

 
Xm-1 Um 

Xm 

X1
max X    max X max 

experience has a relationship with the system. 
Particle Swarm Optimization (PSO) is one of the recent 

evolutionary optimization methods. This technique was 
originally developed by Kennedy & Eberhart in order to solve 
problems with continuous search space [1]. PSO is based on the 
metaphor of social interaction and communication, such as bird 
flocking and fish schooling. This algorithm can be easily 
implemented and it is computationally inexpensive, since its 
memory and CPU speed requirements are low. 

A production system can be viewed as a network of 
machines and buffers. Items receive operations at each machine 
and wait for the next set of operations in a buffer with finite 
capacity [2], [3], [4]. 

The overall production control system is viewed as the 
surplus-based system [2], i.e., the decision is based on how far 
the cumulative production is ahead or behind the cumulative 
demand. 

The method proposed in this paper is based on the flow 
control approach. This latter uses a continuous flow 
approximation to model the discrete flow of parts in 
manufacturing systems [3]. The idea to optimize the fuzzy 

m-1 m 
 
 

Fig.1 A serial line with m machines. 
 

In our approach we are using a virtual buffer Bm at the end of 
the line. The level of this buffer is the cumulative difference 
between the actual production of machine m (which is the line 
throughput) and the target demand. Let the level of buffer i be 
the continuous state variable xi and the production rate of 
machine i the control variable ui (productionrate).The dynamics 
of the system are [3], [4]: 

 

xi    ui   ui1  ............................................................ (1) 

xm  um   d 

The cumulate production is given by [4]: 
 

t 

yi   ui .dv ................................... (2) 
0 
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Where xm is the level of the virtual buffer Bm. This variable 
can be either positive or negative, and is zero indicating the 
demand is fulfilled, while the level of the physical buffer, xi, is 
bounded by 0 and a given buffer size x max: 

xi, xl are respectively the levels of the upstream and 
downstream buffers of Mi; 

X1, X2 and S are linguistic terms associated to the inputs 
variables (x , x and s ); i i     l i 

0  xi 

0  u 
 xmax 

 u max 



.……..…………… (3) 

si is the given by: 

si   yi  d .................................... (5) 

i 

u max  
1 

i 

Where: 

i i 

 
....………… ……………… (4) 

R is the crisp value associated to the output variable ri. 
The output gain generated by the fuzzy controller O < ri < 1 

gives the production rate according to the specified maximum 
capacity of Mi: 

τi : Maximum processing rate of Mi; 
αi: the machine state (0 or 1). In the duration of each 

machine state combination, the part flow is obstructed by the 
failed machine(s), and thus the line can be considered as the 
union of sub-lines, where the machines within a sub-line are all 

R  
0

 
 i l i 

if   0 

if   1 

 
……… (6) 

operational. Sub-lines are separated by the failed machine(s) 
and have no stochastic disturbances. The controllers in the 
optimal controller library are designed for these sub-lines. 

The probability of the machine sate between t and t+dt is 
given by geometrically distribution [4]: 

TABLE I 
MACHINE STATE [4] 

Where (xi , xl , si ) is the value given by the sate of the 
buffer and the surplus [4]. 

The relationship between the production rate and fuzzy 
output “ri” is: 

u  
ri ........................................................................ (7) 

i 
 

Policy control by hedging point shows that for a production 
module “MP” taken in isolation and state machine operating 
(αi=1) there is a critical value ‟zi„for which the control law 
given by the following expression [2], [4]: 

 

 
Where: 
μi: Repair rate of Mi; λ : Failure rate of M . 

 
0 ,if 

r  

d  ,if 

zi  0 

zi  0 .................. (8) 
i i 

 
III. DISTRIBUTED FUZZY SHEDULING 

 ,if zi  0 

 
In fuzzy logic controllers (FLC), the control policy is 

described by linguistic IF-THEN rules, which model the 
relationship between control inputs and outputs with 
appropriate mathematical representation. A rule antecedent (IF- 

Fig.2 shows the structure of the local fuzzy controller for the 
single machine Mi. Next, this strategy is extended for 
controlling general manufacturing systems. 

part) describes conditions under which the rule is applicable 
and forms the composition of the inputs. The consequent 
(THEN-part) gives the response or conclusion that should be 
taken under these conditions [5]. d 

A three-input (antecedent) rule of the Sugeno type has the 
form [4], [6]: 

Buffer state Machine state 

 

IF xi is X1 and xl is X2 and si is S then ri = R 
 

Where: 

 
 

Fig.2 Local fuzzy controller for a single machine. 

+ si ri Production 

- 
Mi FLC 

αi(t) αi (t+dt) Prob 

0 0 1-μi 
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1 0 λi 
1 1 1-λi 
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

IV. EXEMLPE OF LINE TRANSFORMATION 
 

Consider a serial line with 2 machines and 1 buffer as 
depicted in Fig.3. The line produces only one part type; 
constant productions demand rate “d=1”. 

The knowledge base defining the rules for the desired 
relationship is between the input and output variables in terms 
of the membership functions illustrated in TABLE III. The 
control rules are evaluated by an inference mechanism [4]. 

TABLE III 
FLC RULES [4] 

 

 

 
X1

max X2
max 

 

Fig.3 A serial line with 2 machines. 
 

The system is given by: 
 

 x(t)   1 1 u1(t)   B  u(t) 
 x1(t) u (t) (9) 

y (t) 



t u (v)dv 

 2   

 2  2 
0 

 

The proposed Fuzzy Logic Control has been modelled and 
simulated using MATLAB/Simulink. Figure 4 shows our 
developed Simulink model, FLC and manufacturing system, as 
depicted in Fig.4. The specifications of manufacturing system 
module used in this simulation are shown in TABLE II. 

TABLE II 
THE SPECIFICATION OF MANUFACTURING SYSTEM MODULE USED IN THE 

SIMULATION [4] 
 
 
 
 

 

Fig.4 shows the model of the manufacturing system in 
MATLAB/Simulink. 

Fig.5 illustrates the fuzzy set of the buffer inputs which 
Triangular memberships. 
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Fig.5 Membership functions of buffer inputs. 
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Fig.4 Model of the developed manufacturing System in 
MATLAB/Simulink. 
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Production module X max i μi λi τi Zi 

MP1 5 0.5 0.3 0.5 3.96 

MP2 100 0.2 0.05 0.3 2.56 
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Fig.6 illustrates the fuzzy set of the surplus input which 
Triangular and trapezoidal memberships. 

Fig.8 shows the cumulate production of the last production 
module. 
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Fig.6 Membership functions of surplus input. Fig.8 The cumulate production. 
 

Fig.7 shows the surface of the base rules using in FLC for 
surplus =0.5. 

Fig.9 shows the medium production rate of the last 
production module. 
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Fig.7 Rule surface of FLC. Fig.9 The medium production rate. 

 
V. RESULTS AND SIMULATION USING FUZZY 

 
In the simulation, we simulate the last production and it 

medium production rate and it surplus. 
The results demonstrates that the control policy keeping the 

demand d=1, but there is perturbation in some time (see 
Figure.8) that means the control policy is not robust. 

Fig.10 shows the surplus of the last production module. 
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Fig.10 The surplus. 
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VI. PARTICULE SWARM OPTIMIZATION 
 

The Particle swarm optimization (PSO) is first introduced 
by Kennedy and Eberhart in 1995 [1]. It can be obtained high 
quality solutions within shorter calculation time and stable 
convergence characteristics with PSO algorithm than other 
stochastic methods such as genetic algorithm. 

Particle swarm optimization uses particles which represent 
potential solutions of the problem. Each particles fly in search 
space at a certain velocity which can be adjusted in light of 
proceeding flight experiences. The projected position of ith 
particle of the swarm xi , and the velocity of this particle vi at 

optimum result of the problem, but certainly it will be an 
optimal one. 

 
VII. PSO LEARNING ALGORITHM 

 
To accelerate the convergence of PSO, it was proposed to 

find a better solution in a minimum computation time and 
accuracy, we calculate the best solution, on minimizing a 
certain criterion (objective function) is the mean square error 
(MSE) calculated by the following equation: 

1 n 
2
 

 
(t+1)th iteration are defined as the following two equations in 
this study [1]: 

MSE  e(K ) 
i1 

………………………….. (11) 

 
vt1  k  vt 

 
 c r (Pt 

 
 xt )  c r gt  xt   Where: e(k) is the total number of samples and T the 

 
iD iD 1 1 iD iD 2  2 i iD      … (10) sampling time, e(k)  Surplus is the difference between the 

xt 1   pt  xt 
 iD iD iD value of the cumulate production and the value of the demand. 

where, i = 1, ..., n and n is the size of the swarm, D is 
dimension of the problem space, k is the momentum or inertia, 

c1 and c2 are positive constants, r1 and r2 are random 

 
Fig.11 illustrates the particle will consist of nine parameters 

which are the modal values of membership functions of each 
input, respecting the following constraint: 0< ai< ai+1< ai+3<1 

numbers which are uniformly distributed in [0, 1], t determines 

the iteration number, pi represents the best previous position 

(the position giving the best fitness value) of the ith particle, 
and g represents the best particle among all the particles in the 

swarm. The algorithm of PSO can be depicted as follows [1]: 
 

1. Initialize a population of particles with 
random positions and velocities on D- 
dimensions in the problem space, 

2.  Evaluate desired optimization fitness 
function in D variables for each particle, 

3. Compare particle's fitness evaluation with its 
best previous position. If current value 
isbetter, then set best previous position equal 

 
 
 
 
 

Buffer1 

 
 
 
 
 

Buffer2 Surplus 
 
 
 

 
Modal values of membership 

to the current value, and pi 
equals to the 

current location xi in D-dimensional space, 
4. Identify the particle in the neighborhood with 

the best fitness so far, and assign its index to 
the variable g , 

5. Change velocity and position of the particle 
according to Equation (10). 

6. Loop to step 2 until a criterion is met or end 
of iterations. 

 
At the end of the iterations, the best position of the swarm 

will be the solution of the problem. It is not possible to get an 
optimum result of the problem always, but the obtained 
solution will be an optimal one. It can not be able to an 

Fig.11 Particle structure of PSO. 

 
The block diagram (see Fig.12) shows the strategy 

optimization of the controller: 
 
 
 
 
 
 
 
 

 
 

   

 

 
Fig.12 Distributed fuzzy PSO concept. 
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The pseudo code that describes the procedure is the 
following as [5], where used the genetic algorithms “GAs”: 

Fig.15 illustrates the fuzzy set of the surplus input which 
Triangular and trapezoidal memberships optimized. 

 

Initialization (creation of the initial swarm) 
For i=1 to number of swarm„„iteration‟‟ 

For j=1 to number of particles 
Create the member ship function for the particle j . 
Run the simulation of the production 
Evaluate finesse 

End j 
Rank the particles on their fitness function 
Update new swarm by comparison the position of the particles 
End i 

 
Fig.13 illustrates the fuzzy set of the buffer1 input which 

Triangular memberships optimized. 
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VIII. RESULTS AND SIMULATION USING FUZZY PSO 
 

In the simulation, we simulate the last production and it 
medium production rate and it surplus. TABLE IV shown the 
following “PSO” parameters: 
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Fig.13 Membership functions of buffer1 input. 

TABLE IV 
PSO PARAMETRES 

 

Size of the swarm C1 C2 k 

20 0.0001 0.0001 0.5 
 

Fig.16 shows the cumulate production of the last production 
module using fuzzy optimized. 

Fig.14 illustrates the fuzzy set of the buffer1 input which 
Triangular memberships optimized. 
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Fig.14 Membership functions of buffer2 input. 
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Fig.16 The cumulate production after optimization. 
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Fig.17 shows the medium production rate of the last 
production module using fuzzy optimized. 

 

 
The medium production rate 
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straightforward, is that WIP is highly associated with the 
fluctuations of demand. WIP is accumulated when the actual 
production rate is higher than the demand. However, when WIP 
is very low, unpredicted phenomena, such as machine failures, 
may lead the actual production behind the demand and thus 
delay deliveries and cause unsatisfied customers. Obviously, 
product demands of a constant level and pattern make the 
scheduling task easier than randomly changing demands, in our 
case the demand not changing, the WIP is given by: 

Numberof buffer 
 
 

0.8 
WIP   xI t  ................ (12) 
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Control policies that tend to keep WIP at low levels have 
drawn a great deal of attention from researchers and 
practitioners [5]. 
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Fig.19 shows the Evolution of medium WIP in the 

production line with demand rate “d=1”. 
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Fig.17 The medium production rate after optimization. 
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Fig.18 shows the surplus of the last production module using 7

 

fuzzy optimized. 6
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Fig.19 The medium WIP. 
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The fuzzy PSO achieve a substantial reduction of WIP. 
 

IX. CONCLUSION 

The fuzzy used to control the rate in each production stage so 
that satisfies the demand“d=1”for final products while reducing 
WIP within the system “presented by line of transformation”. 
The PSO identifies the parameters for which the fuzzy 

Fig.18 The surplus after optimization. 
 

Conclusions Simulation results, have shown an important 
improvement of performance and production related costs, with 
the use of PSO. 

Tsourveloudis, N. & al defined the work-in-process 
inventory is measured by the number of unfinished parts in the 
buffers throughout the manufacturing system [5]. The 
important question in WIP management is: what is the 
minimum necessary WIP? The answer, which is not 

controller performs optimal with respect to WIP and backlog 
minimization. The proposed strategy “fuzzy PSO” is compared 
to known heuristically tuned fuzzy control approaches. 
Simulation results show that the fuzzy PSO improves system‟s 
performance. 

Generally we can apply fuzzy PSO in more complex 
production systems such as multiple-part-type and/or re-entrant 
systems “flot-shop” and “job-shop” to get the best results. 
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