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Abstract — before the discovery of the concept of analysis of 
neural networks, it was difficult, if not impossible, to estimate the 
solar radiation in the case where there was a lack of 
meteorological data (the most common case). The technology of 
artificial neural networks has allowed us to remedy this problem 
by its ability to learn from examples   and fault tolerant in 
the sense that they are able to handle noisy and incomplete data. 
This paper reviews a statistical and analytical study of previous 
published works concerning the estimation of solar radiation by 
the artificial neural networks. 

We would like to note that this survey covers all journals 
falling under the subject “energy” at the famous scientific 
database “sciencedirect” (about 325 journal). 

Keywords-component; estimation; solar radiation; artificial 
neural networks; synthesis 

 

I. INTRODUCTION 

Until now, renewable sources were completely 
discriminated against for economic reasons. However, the 
recent trend favors renewable energy sources in many cases 
compared to conventional sources. The benefits of renewable 
energy is that they are durable (inexhaustible), omnipresent 
(found everywhere in the world unlike fossil fuels and 
minerals), and essentially clean and environmentally friendly. 

Among the renewable energy sources, solar energy is at the 
top of the list due to its abundance and distribution more 
uniform in nature. Solar radiation is an integral part of different 
renewable energy resources, in general, and, in particular, it is 
the main and continuous input variable from the practically 
inexhaustible sun. Consequently, knowledge of the intensity of 
solar radiation is essential to monitor the performance of 
renewable energy systems. 

A large number of experimental and modeling work has 
been carried out for the calculation of solar irradiance. Recall, 
for example, linear models that consider a linear relationship 
between solar radiation, and sunshine duration (Angestrom- 
Prescott [1,2], Rietveld [3], Ahmad and  Ulfat [4], Benson et 
al. [5], Raja and Twidell [6,7], Chegaar and Chibani [8], I. T. 
Toğural and H. Toğural [9], Katiyar and Pandey [10]), also 
non-linear models, based on a quadratic form of the 
relationship between the global solar radiation, and the 
maximum possible duration of sunshine (Ögelman [11], Bahel 
and al. [12], Lewis [13], Said and al.[14], Tarhan and Sari [15], 
Katiyar and al. [16], Al-Salihi and al. [17]) and they exist other 

models based on temperature data (Bristow and Campbell [18], 
Allen [19]) and models using fuzzy logic (Sen [18]). 

II. ARTIFICIAL NEURAL NETWORKS 

The artificial neural networks, also known as neural 
networks, are now a data processing technique well understood 
and controlled. Formally, a neural network is a mathematical 
function that are associated with input values, the output result 
and adjustable parameters called weights “Fig.1”. From a data 
assembly representative of a system, it is possible to adjust its 
weights to learn the system and its environment may be subject 
to variations. This learning process is parsimonious universal 
approximators. For a nonlinear model with some precision, a 
neural network often requires fewer adjustable parameters than 
conventional methods of regression. 

 

 

Fig.1 Neuron model 

During the last two decades, ANN have proven to be 
excellent tools for research, as they are able to handle non- 
linear interrelations (non-linear function approximation), 
separate data (data classification), locate hidden relations in data 
groups (clustering) or model natural systems (simulation). 
Naturally, ANN found a fertile ground in solar radiation 
research [21][22]. 

There are two important problems concerning the ANN 
implementation: first, specifying the network size (number of 
layers in the network and number of nodes in each layer), 
second, finding the optimal values for the connection weights. 

An insufficient number of hidden nodes cause difficulties 
in learning data whereas an excessive number of hidden nodes 
might  lead  to  unnecessary  training  time  with  marginal 
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improvement in training outcome as well makes the estimation 
for a suitable set of interconnection weights more difficult [23]. 

We can see simply that the use of ANN technology comes 
in the second place after “linear regression” Although it is a 

To determine the optimal number  of hidden nodes, the new technology in the prediction of solar radiation. 

method commonly used is trial and error based on a total error 
criterion. This method starts with a small number of nodes, 

However, in the last twenty years; this technique has seen a 
remarkable development, who summarizing this following chart: 

gradually  increasing  the  network  size  until  the  desired 
accuracy is achieved. 

One of the properties of ANNs is their ability to learn from 
their environment and to improve their performance through a 
learning process also called training process. Learning results 
in a change in the weights value wi,j connecting the neurons 
from one layer to another. The goal is to achieve equality 
between the actual output and simulated output. It is therefore 
necessary first to choose the learning algorithm and define the 
part of the data used for learning in relation to the  total 
amount of data available. 

The various steps in the implementation of an optimized 
ANN consist in selecting: 
 an ANN structure 
 a transfer function type 
 an ANN size (number of layers and of neurons per layer) 
 a learning algorithm; 
 a training/test set; 
 input data 

 

III. ANN APPLIED TO SOLAR RADIATION PREDICTION: 
LITERATURE SEARCH AND EVALUATION 

 
Evolution of the published works number about the 

estimation of solar radiation by the use of ANN 
 
 
 

35 
 
 

30 
 
 

25 
 
 

20 
 
 

15 
 
 

10 
 
 

5 
 
 

0   1995-1998 1999-2002 2003-2006 2007-2010 2011-2013 

Period 

We note a marked increase in the number of published 
works, up to 100% between the period and the period that 
followed. And this proves the efficacy of ANNs technology. 

 

The concept of neural network analysis was discovered 
nearly 50 years ago, where it began in the occupation of its 
place gradually amid other techniques. 

To see the evolution of this type of modeling compared to 
other types, we have made this chart, which shows us the 

The use of ANN to predict solar radiation, taking a global 
dimension, due to their high precision. The following chart 
reviews the most important countries that have adopted this 
technique to estimate solar radiation. 

number of published works according 
modeling followed. 

to  the  method  of Distribution of number of published articles 
according to the country 

 
16 

Distribution of number of published articles 
according to the estimation    ethod 14 
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We note through the scheme somewhat interesting 
developing and poor countries about solar energy research, and 
this is what would take them to the technical progress and 
solve some of its economic and development problems. 16 

It also does not deny that interest  reverting  also  to  its 
geographical location in so-called “Sunbelt”. 14 

Recall the most important researchers by country: 12 

 Spain: A. Linares-Rodríguez et al. [24], G. Landeras et 10 
al. [25], L. Hontoria [26], J.L. Bosch [27], G. López 
[28,29] 8 

 Turkey: O. Şenkal [30,31], A. Sözen et al. [32,37], F. O. 6 
Hocaoğlu [38] 

 Cyprus: S. A. Kalogirou [39,43] 4 

 Greece: F.S. Tymvios et al[44], A. Sfetsos et al [45] 2 

 Saudi Arabia: M. Mohandes [46,49] 0 

 China: Y. Jiang [50,51] 

 Algeria: A. Mellit et al. [52,57] 

 India: S. Alamet al. [58,59] 
 
 

So, this published works were distributed also according to 
journal publisher in this scheme 

 
 

Distribution of number of published articles 
according to the Journal publisher 

 

Number of articles 

 Hourly Solar Irradiance Models: 

Hontoria et al. [60,61] made use of the concept of 
atmospheric transmittance in an effort to generate hourly solar 
radiation series by using ANN, they proposed a 'RNA' type 
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Sfetsos et al. [62] focus on forecasting of hourly solar 
radiation by using two artificial intelligence based techniques: 
ANNs and adaptive neuro-fuzzy inference systems hese 
include linear, feed-forward, re urrent Elman and Radial Basis 
neural networks, together with the adaptive neurofuzzy 
inference scheme. 

 
 Daily Solar Irradiance Models 

Kemmoku et al. [63] used Multistage  ANN  to  forecast 
the daily insolation of the next day. The input data to the 
network are the average atmospheric pressure, predicted by 
another ANN, and various weather data of the previous day. 
The results obtained shown a rediction accuracy of 20%. 

 
 Models for Monthly Mean Daily Solar Radiation 

 
Moreover, In order to facilitate understanding and analysis 

of published works, we try to group them through the main 
objective of the model applied. 

Mohandes et al. [64] adopted a back-propagation 
algorithm for training several multi-layer feed-forward neural 
networks. The input nodes of the neural networks are: latitude, 
longitude, altitude and sunshine duration. The results for the 
testing stations obtained are within 16.4% and indicate the 
viability of this approach 
radiation. 

for  spatial  modeling  of  solar 

Distribution of ANN m dels applied in the published 
works about the prediction of solar radiation 

Models for Solar Potential 
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 Maximum Solar Irradiance Models 

Kalogirou et al. [65] applied a multi layer recurrent 
architecture employing the standard back-propagation learning 
algorithm. The input data that are used are those which 
influence mostly the availability and intensity of solar 
radiation, namely, the month, day of month, Julian day, 
season, mean ambient temperature and mean relative 
humidity (RH). The sensitivity of predictions to 20% variation 
in temperature and RH give correlation coefficients of 
0.9858 to 0.9875 respectively, which are considered 
satisfactory. This is considered as an adequate accuracy for 
such predictions. 

 
 Time Series Prediction Models 

Paoli et al [66] used a MLP and an ad hoc time series pre- 
processing to develop a methodology for the daily prediction 
of global solar radiation on a horizontal surface. The modeling 
of the series begins with the selection of a suitable 
mathematical model (or class of models) for the data. Then, it 
is possible to predict future values of measurements. They 
compared their model compared to other prediction methods 
(AR, ARMA, k-NN, Markov Chains, etc.). 

 
 Models for Solar Potential 

Al-Alawi and Al-Hinai [67] used ANNs to predict solar 
radiation in areas not covered by direct measurement 
instrumentation. The input data to the network are  the 
location, month, mean pressure, mean temperature, mean 
vapour pressure, mean relative humidity, mean wind speed 
and mean duration of sunshine. The ANN model predicts 
solar radiation with an accuracy of 93% and mean absolute 
percentage error of 7.3. 

 
 

IV. CONCLUSION 

 

The renewable energies will be in the near future sources of 
our driving energies; Scientists are in permanent and 
continuous search for alternatives to fossil energy; if they did 
not find which wished for in the ground or deep sea, they have 
their wonderful ways to drawn it from the sun, air, or water. 

However, solar energy remains the typical alternative to 
conventional energies. Because it is the major natural energy 
that are not implemented. And engineers and scientists 
continue in a large number of countries their research and 
experiences to exploit the solar energy. Among the most 
important research, the use of artificial neural networks to 
predict solar radiation. 

In this paper, we try to do a chronological summary of 
recent studies on the use of Artificial Neural Networks (ANN) 
applied to the estimation of solar radiation. 

What is very interesting to note is that in less than 20 years 
of applications of ANN to solar radiation  studies, a great 

variety of neural training approaches have been used (different 
learning algorithms, architectures etc) and a multitude of input 
variables have been explored (meteorological, geographical 
etc). What is common in almost all of these studies is the 
validation of the respective proposed methodology with 
independent data. 

Moreover, artificial neural networks technology gives us 
broad areas of research so that we can estimate the solar 
radiation at different levels: monthly mean, daily, hourly, even 
in places so that we do not have the meteorological data. 

In the end, we say that this article allowed us to take a 
superficial look around the ANNs technique application in 
solar radiation prediction, hoping to be more profound in the 
future. 
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