International Journal of Scientific Research & Engineering Technology (IJSET)

Copyright 1PCO-2014
Vol .1, pp.48-58, 2014

New Optimization for Reconfigurable
Networked Embedded Control Systems

Amen Ben Hadj Aff, Mohamed khalgtfi, Samir Ben Ahméed
*Tunis El Manar University

El Manar 1, Tunisia
tamen.benhadjali@gmail.com

3samir.benahmed@fst.rnu.tn
"University of Carthage
Tunis, Tunisia
2mohamed.khalgui@gmail.com

Abstract— This research paper deals with Distributed
Reconfigurable Embedded Control Systems (RECS) which can
dynamically follow different behaviors at run-time according to
user requirements or any possible evolution in its environment. We
optimize a multi-agent architecture for the system in which a
Reconfiguration Agent is affected to each device to apply local
reconfigurations, and a Coordination Agent is proposed for the
coordination between devices in order to guarantee safe, coherent
and adequate distributed reconfigurations. A Communication
Protocol is proposed to handle this coordination between agents by
using well-defined Coordination Matrices. A tool is developed in
order to implement and test the proposed protocol which is applied
to two industrial production systems.

Keywords—Distributed Embedded Control System,

Reconfiguration, Software Architecture, Multi-Agent Architecture,
Reconfiguration Protocol, Coordination.

I. INTRODUCTION

assured by intelligent agerity, [4], [5]. The reconfiguration of
control systems is currently a very active reseanda where

considerable progress has been njafig5], [9], [10].

To deal with the dynamic reconfiguration of Distried
Embedded Control Systems (DECS), we propose, §wtbrk a
new Multi-Agent distributed architecture. We defitveo kinds
of agents: software Reconfiguration Agents (RA) ehhiare
responsible for controlling the devices and a safev
Coordination Agent (CA) which handles the coherertfe
distributed concurrent reconfigurations of differelevices. The
coordination between devices after any distributed
reconfiguration scenario is mandatory in orderwvtoic any risk
of incoherence. We define also the concept of “dimation
matrix” to specify for each reconfiguration scenatie behavior
of all concerned agents that should react simuttasly. We
define a reconfiguration protocol to manage therdioation
between the networked devices. When a RA wantpplyaa
new reconfiguration, it sends a request to CA. Auest

The constant growth of complexity of embedded antrrepresents a need to improve the system’s perfarejar also

systems makes reconfiguration increasingly impartdn this
context, reconfiguration refers to the ability ofsgstem to
change its functionality at run-time, performingffelient
functions at different instances in time. This il to
reconfigure a system in real-time allows availat@dsources to
be shared between multiple functions and configonmat The
challenges, in reconfiguration, are as much abbat design
model as the level of the environment that suppexecution.

We distinguish two kinds of reconfigurations: stafl] and

dynamic reconfigurationg]. Static reconfigurations are applieone

off-line to apply changes before the system cotddt ,swhereas
dynamic reconfigurations are applied dynamicallyrat-time.
In the last case, two sub-classes exist: manuahfigurations

to be executed by us€f@] and automatic reconfigurations to beresented

to recover and prevent hardware/software erroralsar to adapt
the system’s behavior to new requirements accordinghe
environment’s evolution. Once the request is rexiby the
CA, it informs all other concerned agents which wgtioreact
with such RA which wants to trigger the new behavibhe
execution of the reconfiguration scenario depefificively on
the answers of these reconfiguration agents whiolld decide
if the new behavior can be executed or not. Thisqmol allows
us to win an important number of exchanged messagehe
twork of distributed devices.

This paper gives new extensions of our previous
works [4], [5], [6] with the purpose to allow high
reconfigurability and also functional safety of DECThe work

in [4] deals with distributed multi-agent

PC
Typewriter
Vol.1, pp.48-58, 2014

International Journal of Scientific Research & Engineering Technology (IJSET)

Copyright 1PCO-2014

reconfigurable embedded-control systems
component-based International Industrial

IEC61499 [11]. The authors define an architecture
reconfigurable multi-agent systems and proposeacadamation
agent that coordinates between devices by using
communication protocol. The reconfiguration reqsestre
managed by the coordinator according to their ftyiorhe role
of the coordinator is to accept or to reject a ndiguration
request. The major contribution of the current grajs to
provide new optimizations for the proposed commaitibn
protocol [4] in several directions. Firstly, wesame that the CA
handles for each request an historic by givingefach RA the
possibility to recall the execution of a given reguat different
times. The management of the reconfigurations hcstalows

followinge t proposed architecture we distinguish two kinds gkrds:
Standa@bordination Agent (CA) and Reconfiguration Ager{igA)
dsee Fig. 1). Both kinds of agents are represebjedoftware

components that act on the software control archite in order
togexecute a particular task. The role of any; R#fected to a
particular device dev (i=1..n) is to apply automatic
reconfigurations on the system’s architecture affeidint

granularity levels. The execution of reconfiguraianust bring
the whole system from a valid configuration to deotone

while respecting the reconfiguration constraintec&ise we
assume a distributed system, each RA acts on paulof the

system’s architecture but cannot act in his onereiteives
reconfiguration requests from different sources axeécutes
them in collaboration with the other RAs under aiert

Saving know]edge on the requests frequency and tmbnconditions in order to bl’i.ng the whole System-tsm state.
interactions between them (e.g. conflict or redmeg® Such Therefore, before execution, each recqnflguratemue_,-st must
knowledge will optimize the reconfigurability ofetsystem and be approved by an entity of the multi-agent architee that

the CA behaviour for future reconfigurations. Fertnore, each
RA can exhibit the behavior of the CA when thigtadecides to
delegate the execution of a secondary request &eitder in the
case that this request is sent at the same time i@ one
having the highest priority. Thus, we add a newcfiomality to
the CA which is the delegation of reconfigurationanagement
to RAs. The delegation functionality presents twajon
advantages. Firstly, it aims to improve the perfangce of the
CA by reducing the number of requests it handleso8dly, we
optimize the functional safety when the coordinasobroken.
In [5] and [6], the authors present a UML-baseesign

manages the collaboration and the communicationvdmt
distributed RAs. Consequently, we define the conhcep
Coordination Agent that handles the coherence sfriduted
reconfigurations between RA. When a RA wants tdyapmew
reconfiguration, it sends a request to the CA iheotto have its
approbation. The coordination in the context of [3ES very
important because any uncontrolled dynamic recanditpon
can lead to critical problems when it brings thetesn to an
incoherent and unsafe behaviour. In order to mantge
coordination between RAs, we also define the conadp
Coordination Matrix (CM) which contains safe redgnfation

approach for agent_based reconﬁgurab|e ECS hava]g scenarios that can be applled Simultaneously bydiﬁerent
centralised architecture. In the current paper, aim is to RAs. The Coordination Agent is therefore the erttigt handles
extend this previous work by considering distrilbutethe set of CMs corresponding to the different réigomation
architectures. Therefore, we assume that DECSemerithed as Scenarios. In addition, we propose, a communicagiatocol
a network of interconnected controller componehis tan have between distributed RAs to manage distributed régoration
different configurations. A configuration is defthdy a set of Scenarios. In this protocol we distinguish, threlad& of
Components and connections between them. The éxemfta communication primitives between distributed agEﬂtRA can
reconﬁguration request must bring the System franvalid send a request to the CA in order to haveaiithorization for

configuration to another one while respecting
reconfiguration constraints.

This paper is structured as follows. Section 2 gmes the
optimizations of the multi-agent architecture witthe
specification of the RAs and the CA. Section 3 deaith the
optimizations of the communication protocol. Sectbpresents
the application of the optimized protocol to twoseastudies,
FESTO [7] and ENnAS [8]. Section 5 presents
implementation of the protocol and experimental ultss
Finally, the major contributions of this work andudre work are
emphasized in the conclusion.

[I. OPTIMIZATION IN THE MULTI-AGENT ARCHITECTURE
In this section, we present an optimization in itindti-agent

architecture for reconfigurable DECH]. A system Sys is
composed of n networked devices {gdev..dey}. Within the

th&e execution of a reconfiguration scenario. Apoese to the

request, the CA can accept, reject (definitivelypaovisory) or
delegate the execution of the concerned scenarliesd
responses of the CA correspond respectively tetpramitives:
Acceptance primitive Rejection/Recall Primitive abdlegation
primitive. The new extensions of the communicatntocol

(as presented irf4]) concern mainly the addition of two

tHanctionalities: delegation and recall. The purpasfe these

extensions is to have high reconfigurability anddiional safety
especially when the CA is broken.

A. Specification of the Reconfiguration Agent Behavior

As previously presented in [5], the behaviour oRA is
formalized by using nested state machines. Indeeddefine
three levels of reconfiguration: the first dealghnihe system
architecture, the second deals with the internalcgire of

International Journal of Scientific Research & Engineering Technology (IJSET)
Copyright 1PCO-2014

devices or with their connections, finally the thideals with relative to SCi; and DC;;x, denotes a state iDC;;, which

reconfigurations of data. Therefore, in order toplgpa correspond to one of the following cases: (i) onenore states
reconfiguration scenarioR;;x.n, the reconfiguration agentof a SC state machine,(ii) more than one SC statehine, (i)

executes three steps as follows (i) the architatttonfiguration all the AC state machines.

AC; is loaded in the memoryfAC; denotes a particular
architectural configuration), (ii) then the strugtuconfiguration

SCi; is chosen between different structural configorati Coordination between RAs appears to be essential in
corresponding to AGiii) finally, the data configuratio™C;;x, the automatic reconfiguration of DECS. Indeed, umicdled

is applied. DC;jx correspond to a particular state machin@configurations can lead to serious disturbance<riical

Ay

B. Specification of the Coordination Agent behavior

Problem Diagnos&: 38 \&mprovment request
RA ‘3
Vs 3 N
n/'//‘ A //’ “/’//
RA

2 \\\i ADK’ RA,

II Communication network
/ T
iﬁy l ——— Coordination between

RA,, RA;, RAg

Ry

|| 1]
Vv
RA, \ A:Ry / RA, - - --p Coordination between
r7/
R A: RA4 RA,

Fig. 1 Multi-agent architecture of reconfigurablE©S

problems in the system behavior because distribRad can Fig. 1). A CM is characterized as follows: eactela (a€ [1,
execute incoherent and contradictory reconfigunaoenarios n]) corresponds to a reconfiguration scenario
if they don’t communicate correctly with respectsigstem and Reconfiguration;,jaxana t0o be applied byAg, as follows (see

time constraints. To deal with these difficultiagg define in this
section the concept of Coordination matrix with thepose of
handling coherent reconfiguration scenarios inritisted ECS
and we propose, thereafter, a multi-agent architectfor
distributed reconfigurable systems, where a comoatign
protocol between agents is defined to guaranteetsiaviors.

Coordination Matrix

Fig. 2):

CM[a, 1] =ia; CM[a, 2] =ja ; CMJ[a, 3] = ka ;CM[d] = ha
According to this definition: If an agenfg, applies the
reconfiguration scenariBeconfiguration;ajaxana, therefore it is
equivalent to say that it applies th&econfiguration
CM[a,1],CM[a,2],CM[a,3],CM[a,4]. Each other RAAg, (b €
[1, n]M{a}) has to apply the scenaridreconfiguration
CM[b,1],CM[b,2],CM[b,3],CM[b,4]. We denote in the

Let Sys be a distributed reconfigurable system of n deiceollowing by idle agent each agenfg, (b € [1, n]), which is

and let Ag,..., Ag, be n agents to handle automatic distributagbt required to apply any reconfiguration when cihgerform
reconfigurations of these devices. We denote iffdh@wing by scenarios defined in CM. In this case:

Reconfigurationi,jakana @ reconfiguration scenario applied by CMib, 1] = CM[b, 2] = CM[b, 3] = CM[b, 4] =0

the RA Ag (a €[1, n]) as follows: (i) the corresponding AC Cond)CM[b,l] =condewp 2 =CONdemp 3jcmp.a) = TrUE.

state machine is in the state AC Let cond, be the set of

conditions to reach this state; (i) the SC stateime is in the e denote in addition b§(Sys) the set of coordination matrices
state SGja Let conda be the set of conditions to reach thig, e considered for the reconfiguration of thetriiated

state; (iii) the DC state machine is in the sta@J, . Let L) . .
condi, na be the set of conditions to reach this statehdidle embedd_ed S)_/ste@ys. Each coordination matrix CM is applled
! at run-time if for each agemAg, (a€[l, n]) the following

coherent distributed reconfigurations that guamantsafe n o
behaviors of the whole systeBys, we define the concept ofconditions are satisfied:
coordination matrix (CM) of size (n,4) that definesherent

scenarios to be simultaneously applied by differ@As (see condcmia 1) =CoNdeya 2 =CONdempa 31 cmia gy = True.

International Journal of Scientific Research & Engineering Technology (IJSET)
Copyright 1PCO-2014

/1 2 3 4\ Applicable reconfigurations control the set of Reconfiguration Agents (Ad O [1, n]) as

1 = - = follows:
* When a particular agent A¢ga €[1, n]) should apply a
0 0 O O]« Idleagent Reconfigurationis ja, ka, ha it SENAS the following request

Agy| ia ja ka ha| .~ Reconfiguration to be applied by to CA (€ (Sys)) to obtain its authorization:

the RAAG request (Aga, CA, Reconfigurationia ja ka ha)-
I I : i) . * When the CA receives requests ¢&l) from different
AGof 1o jo kb hb| - Reconfiguration to be applied by RAs at the same time then, it supports the highestity

the RA Ag, request according to i&(Sys).
« When CA € (Sys)) supports this request that
A'gn\i'n in kn r'm/ - Reconfiguration to be applied b corresponds to a particular coordination matrix €N
the RA Ag, (Sys) and if CM has the highest priority betweeh al
matrices of Concur(CMYX {CM}, then CA(E (Sys))
Fig. 2 The Coordination Matrix informs the agents that have simultaneously totnedh
Ag, as defined in CM. The following information is $en
On the other hand, we deficencurrentcoordination matrices, from CA (€ (Sys)) for each Ag b € [1, n]\ {a} and
CM; and CMtwo matrices of(Sys) that allow different CM[b,i]#0, Vi € [1, 4]:

reconfigurations of a same RA A¢be[1, n]) as follows:
. . . Reconfiguration (CA, Ag,, Reconfigurationcmp, 11, cmpp, 2],
* CM;[b,i]#0Vj€{l,2}andi€[l, 4]; in this case Agp CM[b. 3], CM[b, 4])-
should react when CMor CM,is loaded.
« CM, [b, i] # CM, [b, i] Vi € [1, 4]; in this case, the agent * According to well-defined conditions in the control
Agy, has to apply different reconfiguration scenaribtha ;22%?23”52{%1‘;2 d/ﬁg:hrgfgsé g (I?{i)erg?lléﬁ;;avcebe
same time. ' .

present the reconfiguration algorithm and its
procedures relative to the three different idegifi
cases corresponding respectively to acceptance,
delegation and rejection/recall primitives:

To guarantee a deterministic behavior when conaotrre
coordination matrices are required to be simultasboapplied,
we define priority levels for them such that only timatrix with
the highest priority level should be applied. Wahate in the A. Acceptance primitive

following by: In this case (see Fig. 3, a reconfiguration ageAt ARy,
(a=1..n) sends a request to the CA to have itsoautition for

» Concur(CM)is the set of concurrent matrices of G applying a reconfiguration scenario. The CA mustifyethe

&(Sys); applicability of the requested scenario by trangigr the

* level(CM)is the priority level of the matrix CM in the set request to the other reconfiguration agents RA, fu=1..n,
Concur(CM) U {CM}. b+a). Then, the requested scenario is applicable ibrdlf the
RA Ag, send a positive response to the CA. ThereafterCiiy
I11. OPTIMIZATION IN RECONFIGURATIONPROTOCOL will authorize to the requester the execution o tequested

In this section we present an optimization in th@cenario and the other RAs must follow by applyapgropriate

reconfiguration protocof4] which describes the behaviour of €configurations in order to bring the whole disuted system
distributed RAs orchestrated by a CA to dynamical}tC @ safe state.
reconfigure DECS. The software architecture of ssygdtems is BEGIN
a network of control components where each oneraisn sub- I(priority = MAX)
part of the system. We assume in addition thatwswé /*ﬂ? y;. i t that has the hiahest
architecture of DECS is designed using a UML-coamli e recon |gu[)a lon request that has the highes
standard. In order to guarantee safe and cohe rg‘r:_)g:'tzc')s sent by Ag

=

reconfigurations, we define a Coordination Agenhated by| . ~* ~ .
CA that handles a set of Coordination MatricegSys) to /nglét:l_lganon of the number of recalls for theARAg,

International Journal of Scientific Research & Engineering Technology (IJSET)

Copyright 1PCO-2014

[*initialization of the number of recalls for theARAg.
reply =True
[*a Boolean that represents the reply of CA to the
reconfiguration request sent by Ag
While (b<n)
[*for each Ag, b €[1, n]\ {a} and CM[b,i]£0, (1<i<4)*/
I (cond®, = cond®}y, = cond®p i, = True)
Then
I* Ag,b €[1, nand CM [b, i]#0, Vi €[1, 4] */

Accept (Ag, CA, ReconfiguratiohCM[b, 1], CMIb, 2], CMIb, 3], CMib, 4))

/*maxRec is a constant predefined by the CA amdptesents
the maximal number of recalls authorized by the f6A a
reconfiguration request*/

nRec=nRec+1

Reject(CA)), Ag, Reconfigurationy ja, ka, ha NREE)

[*Provisory Rejectiomreply sent from CA to Ag/

Else/* if nRec= maxRec

Reject(CA), Ag, Reconfiguration,, ja, ka, ha MaxRec)
[*Definitive Rejectiorreply sent from CA to AY

End If

[*Acceptance reply sent from Mg CA */
Else
F)erect(Agb' CA), ReconfiguratioBwp, 13, cmb, 21, cMib, 31, CMb, 4]
, 0
/* Rejectionreply sent from Ago CA */
reply=False
End If
End
If (reply=True)
[*If CA receives positive answers from all,Algen it
authorizes reconfigurations in the concerned destice
Then
For each Ag, /* Ag, b €[1, n]and CM [b, i]#0, Vi €1, 4]
Apply (ReconfiguratioBwp, 1, cmb, 2], cMib, 31, CM[b, 4)
[*Execution of the reconfiguration scenario in thdevice
supervised by AY
Else
Call Rejection/Recall primitive
End If
Else
[*the case of a reconfiguration request r that havethe
highest priority sent by a RA &g
Call Delegation primitive
End If

Fig. 3 Acceptance Primitive.

B. Optimization: Rejection/Recall primitive

Fig. 4 Rejection/Recall Primitive.

When a request is rejected, it is placed in a ngitjueue which
is managed by the CA, while the RA has not reactied
allowed maximum number of attempts. The RA,

subsequently recall the CA of its request. Otheswi$ the
maximum number is reached, then the request isithedly
rejected and will not be stored in the waiting qeietiherefore,
in addition to Rejection primitives, the CA has takility to
manage particular rejection cases (not definitibg) Recall
primitives under known conditions. The purposeth# recall
process is to allow a high reconfigurability of thiole system.

C. Optimization: Delegation primitive

In the common case, the CA defines by considerag sl
constraints, a priority order to handle the recagunfation
requests coming from different and distributed Rlsthe case
that the CA receives two requests at the same time®, it will
deal with the request having the highest priorignt by a RA

Ag. (a=1..n)). Then the execution of a second request can be

reported to an ulterior time. Nevertheless, to ginere
flexibility and optimality to our multi-agent ardkicture, the CA
can delegate to a RA Adc=1..n, e=a), the application of the
second reconfiguration request (see Fig. 5) wheis ihot
conflicting with the first scenario (with the higdtepriority) i.e.
it doesn’t bring the system to an unsafe state.

In the case of acceptance, all the RA,Ab=1..n, ka) must

send a positive response to the CA before applying

reconfiguration scenario. In the rejection casee (&y. 4), if
there is only one RA Agthat sends a negative response th
the reconfiguration request is rejected. In additiwe assume
that the CA can manage a history which is relativeeach
reconfiguration request. Indeed, the CA gives thssibility to
the RAs to make several attempts to execute a gieenario
before a definitive final rejection. The maximumnmaer of
attempts relative to a reconfiguration scenaridided by the
CA.

[*CA receives a negative answer from a particidgent Ag
If (nRec<maxRec)

gh=1 /*initialization of a counter for the list notConc

i=1 /*initialization of line’s index
j=1 [initialization of column’s index
k=1 /*initialization of a counter for the list Conc

For each linein CMTi,j]
[*research in CM for the list of RAs that are ndte and must
apply the same reconfiguration scenario tha*Ag
while(CM [i,j]= CM [a,j] and j<4)
/*CM corresponds to the reconfiguration requesttthas the
highest priority*/

=i+l
End
1f(j=4)
Then

can

International Journal of Scientific Research & Engineering Technology (IJSET)

Copyright 1PCO-2014

Concl[K]=i

/*Conc is the list of RAs (different of A&oncerned by the
highest priority request in CM and that must aply same
reconfiguration scenario than Ag

k=k+1

Else

notCon[h]=i

/*notConc is the list of RAs (different of §@&oncerned by the
highest priority request in CM and that not apglg same
reconfiguration scenario than AY

i=i+1

End If

END

i=1 /*initialization of line’s index

j=1 /*initialization of column’s index

while(i<k) //for each element i€@onc

j=1 /*Initialization of column’s index
while(CM,[Conc]i],j]=0and and j <4)

[*CM, represents a reconfiguration regeststhat haveret t
highest priority sent by a RA &¢

=i+l

End

If (j=4)

/* the RA having the same line index than Conc[i] M, &
idle*/

Then

i=i+1

Else

If(nRec<maxRec)

/*max recall number of the RA A not reached*/
Reject(CA), Ag, Reconfiguration jc, ke, o NREC)

nRec.- nRec.+1

[*The reconfiguration request is rejected becaulmre exists a|
not idle Ra having the same line index than theCRAC][i] in
CM, */

Else

Reject(CA), Ag, Reconfiguratior jc, ke, no MaxRec)

End If

End

i=1 /*initialization of line’s index

j=1 [*initialization of column’s index

while(i<h) /*for each element imotConc

j=1 /*Initialization of column’s index
while(CM,[notConc[i],j]= CM[notConc[i],j] and j <4)
/*CM, and CM have exactly the same line then the
reconfiguration request r is the same than the égjtpriority
one and it will be definitively rejected*/

Reject(CA, Ag, Reconfiguration, i, ke, o MaxRec)

End

/*the RA having the same line index than Concl[ioM, is
idle*/
Then
i=i+1
Else
[*The reconfiguration request is rejected becausrd exists d
not idle RA having the same line index than theRAC[i] in
CM/*/
If(nRec<maxRec)

Reject(CA, Ag Reconfiguration jc, ke, ncNREC)

nReg- NReg+1
Else

Reject(CA, Ag Reconfiguration, jc, kc, e MaxRec)
End If
End If
End
[*The reconfiguration request r is delegated whériree RAs
of Conc are idle in CiMand all RAs in notCon have to execute
a different request than the highest priority one*/
Delegate(CA), Ag Reconfiguration: ic, ke, hd
End If
END

If (j=4)

Fig. 5 Delegation Primitive.

IV. CASE STUDY. RECONFIGURATION OF TWO INDUSTRIAL
SYSTEMSFESTOAND ENAS

In order to highlight the contributions of our worke propose
to reconfigure two industrial systems named FEJTPand
ENAS [8] which are well-documented demonstrators used by
many universities for research and education p@gos

A. FESTO system

The FESTO system is composed of three units:
Distribution, the Test and the Processing unite Distribution
unit is composed of a pneumatic feeder and a ctewveo
forward cylindrical work pieces from a stack to testing unit
which is composed of the detector, the tester aedetevator.
This unit performs checks on work pieces for heighaterial
type and color. Work pieces that successfully plaisscheck are
forwarded to the rotating disk of the processing,wmhere the
drilling of the work piece is performed. We assuinethis
research work two drilling machines Drill_machineind
Drill_machine2 to drill pieces. The result of theillthg
operation is next checked by the checking machmuketlae work
piece is forwarded to another mechanical unit. @hpeduction
modes of FESTO are considered according to theofaieput
pieces denoted by number_pieces into the systeme{ected by
the feeder).

» Casel: High production. If number_pieceonstantl,
Then the two drilling machines are used at the stme

the

International Journal of Scientific Research & Engineering Technology (IJSET)
Copyright 1PCO-2014

in order to accelerate the production. In this cdke tin with a cap, the belt moves the pallet into @wpper
Distribution and the Testing units have to forwand station G2 to remove the tin (with two pieces) itie
successive pieces to the rotating disc beforeirsgathe second storing station St2.

drilling with Drill_machinel AND Drill_machine2. Fo
this production mode, the periodicity of input eds p C. Reconfiguration scenarios
= 1l1seconds. We present in this section, different scenarios of

+ Case2: Medium production. If Constant2< reconfiguration of DECS applied to our two indusitisystems.
number_pieces < Constantl, Then we uSthese scenarios correspond to different granuldetels of
Drill_machinel OR Drill_machine2 to drill work pies. DECS software architectures where we can apply
For this production mode, the periodicity of infi¢ces reconfigurations with the main purpose to guarangsde
is p = 30 seconds. behaviors while satisfying system’s evolution (seetion I1.A).

e Case3: Light production. If number_pieces < Con&tan
Then only the drilling machine Drill_machinel iseds
For this production mode, the periodicity of ingikces
is p = 50seconds.

1) Architectural Reconfiguration:It deals with changes
within the software architecture. This form of refiguration is
realized by adding or removing software control poments.

Running examples:

e Two possible architectures can be distinguished tfar
FESTO system: in the first case (light productiothe
system is implemented only with one drilling maehin
(Drilling_Machinel). Therefore, the software compoh
representing the second drilling machine is loadedhe
memory only if the first Drilling Machine is brokeand

On the other hand, if one of the drilling machiiesroken at
run-time, then we have to only use the other oneghis case,
we reduce the periodicity of input pieces to p setfbnds. The
system is completely stopped in the worst casehé two
drilling machines are broken.

B. EnAS system must be replaced by the second one. The secondblgoss
The ENnAS system is mainly composed of a belt, tewk j architecture' represents the .high or the mediqmmﬂmh
stations (J1 and J2) and two gripper stations (&1L @2). We mode. In this case, the architecture must haveinatances

assume that it has the following behavior: it tporss pieces Of the drilling machine component (Drilling_Machihend
from the production system (i.e. FESTO system) istioring Drilling_Machine2).

units. The pieces in EnAS shall be placed inside tb close * For the EnAS system, we also distinguish two pdssib
with caps afterwards. Two different production tgies can be architectures: when the first production mode isliad, then

applied : we place in each tin one or two piecamating to only the control components representing the fitatk
production rates of pieces, tins and caps. We @easpectively Station (J1) and the first Gripper (G1) are load&ithough,
by nbpieces, nbtins+caps the production numberiedes and in the case of the second production mode the tbadetrol
tins (as well as caps) per hour and by Thresholhrable components represent the first Jack Station {i&)second

(defined in user requirements) to choose the adequa Jack station (J2) and the second Gripper (G2).

p_roductlon strategy. Th_e Jack stations place ”?m@ed 2) Structural Reconfigurationtt deals with internal changes
pieces and close tins with caps, whereas the GTBIRIONS i the software architecture without adding removing
remove charged tins f_rom the beltinto the; stoungs. |n|t|a|!y, software components. This form of reconfiguratisnréalized
the pelt moves a.partlcular pallet containing aatird a cap into by applying changes to the internal structuresomfonents or
the first Jack station J1. to their connections.

According to production parameters, we distinggb cases: i
Running examples:

« First production policy: If (nbpieces=nbtins+caps ¢ In the second possible architecture (high or thediome
Threshold), then the Jack station J1 places from th Production mode) of the FESTO system: the two abntr

production station a new piece and closes the itin tive components Drilling_Machinel and Drilling_Machinefe
cap. In this case, the Gripper station G1 remokegtit loaded in memory however we can use both of the two
from the belt into the storing station St1, drilling machines (if number_pieces Constantl) or use

« Second production policy: If (nbpieces=nbtins+caps only one of them if we decrease the production (ite
Threshold), then the Jack station J1 places jpi¢ee in Constant2 number_pieces < Constantl). o
the tin which is moved thereafter into the secoadkJ * For the EnAS system: when the second productionened

station to place a second new piece. Once J2 cthees applied, then the two control components J1 andaré
loaded in memory. When the second jack station {g2)

International Journal of Scientific Research & Engineering Technology (IJSET)

Copyright 1PCO-2014

broken then we have to change the internal behawabthe
first jack station (J1) to close the tin once inht@ns only
one piece. The tin will be moved directly to theceed
Gripper (G2).

3) Data reconfiguration: Deals with reconfigurations of
system data i.e. internal data of software compisnen
Running examples:
« A data reconfiguration in the FESTO system can eotg

2 4 2 3 2 50 0 0000
2 4 2 3 2 50 0 0000
2 4 2 3 2 50 0 0000
2 1.0 0 2 50 0 1200
\2 10 o/ \2 5 0 o/ \1 20 o/

Fig. 6 Coordination Matrices of FESTO and ENAS

The first matrix CM is applied when FESTO agents apply the
light-production mode and the EnAS agents are reduio

for example changes of the values of the productigy;rease the productivity by applying the firstcaretion policy

periodicity: in the second possible architectufeyeé apply
the medium production, the periodicity is 30 s, reas
when the high mode is applied the periodicity iss11

to put only one piece in each tin. The second madi, is
applied when FESTO agents apply the high-productimde

For the EnAS system, we can change the Threshdick va@nd the EnAS agents are required to increase tuiptivity by

(increase or decrease) according to the produgtivapplying the second production policy to put tweggis in each

requirements.
In order to apply distributed reconfiguration, wssame that
each control component of FESTO and EnAS is supetvby a
different RA as shown on the following table. EaRA is
represented by a line in the coordination matr{seg Fig. 6).

TABLE |

RECONFIGURATIONAGENTS OFFESTOAND ENAS

RA System | Lineindex Control
intheCM Component

DUA | FESTO i=1 Distributing Unit
TUA | FESTO i=2 Testing Unit
PUA | FESTO i=3 Processing Unit
JSA | EnAS i=4 Jack Station
GSA | EnAS i=5 Gripper Station

In addition, in order to represent examples of @pple
distributed reconfigurations and guarantee theinecence at
run-time, we assume that the CA handles aoé&oordination
Matrices &(Sys) = {CM,, CM,, CM;, CM,, CMs, CMs, CM7}
(Fig. 6):

<
@)
<
<

CM, CM3;
1111 21 2 1 2 2 2 2
1111 21 2 1 2 2 2 2
1111 2 1 2 1 2 2 2 2
2100 1100 1100
2100 1100 1100

cM, CMs CM,
1111 1311 2 3 2 3
1111 1311 2 3 2 3
1111 1311 2 3 2 3
1200 2100 210 0
1200 2100 210 0

CM; CMg CM,

tin. The third matrix CM is applied when FESTO agents apply
the medium-production mode and the EnAS agentseapgred
to apply the second production policy to put twegais in each
tin. The fourth matrix CM is applied when Jack station J1 is
broken. In this case the FESTO system has to deertee
productivity by applying the Light production modehe matrix
CM;s is applied when FESTO adopts the light productind the
first drilling machine is broken then it must beleced by the
second one. The matrix GMis applied when the drilling
machine Drill_Machinel is broken in FESTO. In tbase EnAS
system is required to decrease the productivityglying the
First Production mode. The matrix GNk applied when the
second drilling machine is broken at run-time amdhis case
the EnAs system is required also to decrease thduptivity by
applying the First Production mode. The matrix {8 applied
at run-time to stop the whole production when the trilling
machines are broken at run-time. In this case thaSEagent
has to reach the halt state. Finally the matrix G81applied
when the sensor at EnAS system detects that nuafl@eces
waiting to be stored is very important. In this&e&nAS System
is required to activate the second jack statioimdzder to place
only one piece in the tin before closing it.

In the following, we present different application$ the
reconfiguration algorithm that is used to executee t
reconfiguration scenarios previously detailed. Fare clarity,
we represent the exchanged messages on the netwfork
distributed RAs responsible of the control of thgstem’s
devices and the CA using UML sequence diagrams.

International Journal of Scientific Research & Engineering Technology (IJSET)

Copyright 1PCO-2014

D. Acceptance primitive

This primitive is applied when the Drilling Machiheis
broken in the Processing unity. The RA correspamdin this
control component (denoted by PUA) sends a reqteeshe
Coordination Agent in order to apply the low modeduction.

coherent reconfigurations for all the distributedsRof the
system. According to this CM, the CA sends messagdbe
concerned RAs (not idle) and wait for their resmgandefore
decreasing production in the whole system. If alblies are
positive, then the CA orders all RAs to apply teeanfiguration

The CA uses the Coordination Matrix CM6 to identilye request (see Fig. 7).

applicable reconfiguration scenarios and thereforguarantee

Drilling_Machinel
is broken

I I I
[} I I
I I
I I I
I I
| Request(PUA, CA, Reconfig2323) |
; ;

|
Request(CA, JSA, Reconfig2100) } Request(CA, GSA, Reconfig2100)

Request(CA, TUA, ﬁeconfig2323) } Request(CA, DUA, Reconfig2323)
le
t ¢

Y

N
Accept(GSA, CA, Reconfig2100)
1

__¥Y

Accept(TUA, CA, Reconfig2323)

Apply(Reconfig2100)

_——y____

Fig. 7 Sequence Diagram for the acceptance prienitiv

E. Delegation primitive
The FESTO system operates according to the lighdymtion

using a sensor that the number of pieces waitingetstored is
very important. Therefore, the EnAS System is neglito

mode and the PUA responsible of the first DrilliMpchine activate the second jack station J2 in order taeplanly one
(Drilling Machine 1) sends a reconfiguration requesthe CA Piece in the tin before closing it. Both agentsdstiveir requests
because this machine is broken. Therefore, the ralont" order to apply their reconfiguration scenaridthe CA
component of the second machine (Drilling_Machihen@st be decides that these requests can be executed aathe time
loaded to replace the broken component. This requiéthout any problem so it demands to all RAs if Cién be
corresponds to the coordination matrix CM5. At ¢aene time, applied and delegates the JSA to replace it inrdal@pply its
the EnAS system (adopting the second productioneindetects OWn request. In that case, the JSA plays the fo®Acto trigger

a new reconfiguration scenario (see Fig. 8).
| |

|

S . I
Drilling_Machinel I Number_pieces

I

I
I
I
| > >= Constantl

Request(JSA, CA, Reconfig1100) |
Reconfig(CA, JSA, Reconfig2100) i Reconfig(CA, JSA, Reconfig2100)

Pt

I
I
i is broken
I
I

I
Request(PUA, CA, Reconfig1311)
|

I

I

I

I

I

I

I
4
T e
| Reconfig(CA, DUA, Reconfig1311) |

&
|
|
|
|
|

T
Reconfig(CA, TUA, Reconfigl1311)

Accept(TUA, CA, Reconfig1311
[b —*
|
I

Apply(Réconfingll]
I

} Delegate(CA, JSA, ReconﬁgllOO]\}
| oS T, TR |
|
|

ey G

Accept(DUA, CA, Reconfigl311

Fig. 8 Sequence Diagram for the delegation primitiv

F. Rejection/Recall primitive production policy (from first policy to the seconde). Hence,
We assume that, initially the FESTO system operaté$ two Jack stations of the EnAS system must leeational.

following the light production mode. When the useants to However, when the first Jack station (J1) is brokba JSA will

apply the high production mode then one of the Dii#st send S€nd a negative response to the CA. Thereforereeested

a request to the CA. Consequently, the CA trangfezgequest reconfiguration will be rejected (see Fig. 9).

to the RAs of the EnAS system in order to change th

International Journal of Scientific Research & Engineering Technology (IJSET)

Copyright 1PC0O-2014

The CA gives to each RA the ability to resend tlens
reconfiguration request at different times when tienber of
attempts has not yet reached the maximal numbed fby the
CA. This procedure (hamed Recall procedure) israssiuto be
a provisory rejection. In this case the requestaced in the
waiting queue managed by the CA. When the numbeeazils

reaches the maximal number then the rejection fimitiee. In
the running example we assume that the maximal purfdy
recalls is set to 3. Then the DUA can send hisesgto increase
the production rate three times at most. When hird &attempt
is rejected because a jack station is broken famgte then the
request of DUA will be definitively rejected.

TUA

PUA

Apply High
Production

©
VL

]

I I
| |
I I
I I
I I
I I
I I
| |
| Reconfig(CA, TUA, Reconfig2121) LReconﬁglCA, PUA, Reconfig2121)
Accept(TUA, CA, Reconfig2121) }‘ Accept(PUA, CA, Reconfig2121)
»

]

.

| A

equest(DUA, CA, Reconfig2121)

Reject(CA, DUA, Reconfig2121, 1)} Reject(JSA, CA, Reconfig1100, 0) !

I

I
IRequest(DUA, CA, Reconfig2121)!
I

JSA

|
Reconfig(CA, JSA, Reconfig1100) i Reconfig(CA, GSA, Reconfig1100)
|

I
! o
i Accept(GSA, CA, Reconfig1100)
I i
T P
I I

| —_—

Jack Station 1
is broken

Kmmmm e -
I

Reconfig(CA, TUA, Reconfig2121) LReconfigtCA, PUA, Reconfig2121)

¢
|
|
L
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
»

Accept(TUA, CA, Reconfig2121) r Accept(PUA, CA, Reconfig2121)

1

Reject(CA, DUA, Reconfig2121, 2)

o K
Request(DUA, CA, Reconfig2121);
|

» Reconfig(CA, JSA, Reconfig1100)

! Accept(JSA, CA, Reconfig1100) _ Gripper Station 11is

I

I

I

I

I

I

I

\ >
i
I

! ~broken

|

|
P
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
|

Reject(CA, DUA, Reconfig2121, 3) Reject(JSA, CA, Reconfig1100, 0)
Km o «

g Reconfig(CA, JSA, Reconfig1100) i Reconfig(CA, GSA, Reconfig1100)

I

i Accept(GSA, CA, Reconfig1100)
Koo e
I I

is broken

I
I
|
Jack Station 2 !
I
I
I
I

Fig. 9 Sequence Diagram for the rejection/recathjpive.

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS

To highlight our contribution, we implemented a slation
tool with java and then test it with the two benenkn
production systems FESTO and EnAS.

In this section, we give an evaluation of the psgab
communication protocol for intelligent reconfiguoats of
DECS by varying the number of reconfiguration mgssa
exchanged within the network of distributed ageWs. assume
that n RAs send n reconfiguration requests at éieestime. We

denote by msg the number of exchanged messages by

distributed agents when we use a CA in the netwlorkhe case
of absence of coordination, we denote by msg thabau of
exchanged messages. A message in both cases cagsergpa
request, an acceptance, a rejection (provisoryedinitive), a
delegation or an execution order (apply) from tberdinator.
The gain (denoted by G) obtained by the proposetbpol is
msgc / msg and it represents the decrease of tbleaerged
messages between distributed devices when we Gge b the
following, we will detail different cases of exemut:
« If one message is accepted (among n requestsserRAs)
and all others are refused (only the highest-gsiariessage
is accepted). Then, the number of exchanged messdte

coordination ismsg = 5*n-3. In the case of absence of
coordination, we will havensg= 2*n*-n-1. The gain with
the use of a coordinator is G =rgsasg = 5*n-3 / 2*A-n-1.

If the delegation primitive is applied (in preserafea CA),
for example we assume that among n messages, paliso
accepted by the CA, (n-1)*0,5 are rejected (i.€056f the
rest of requests) and (n-1)*0,5 are delegated fferdnt
RAs. Thus,msg = 3*n”/2+2*n-3/2, msg= 5*n/2-2*n-1/2
and G = 3*A/2+2*n-3/2 / 5*f/2-2*n-1/2.

As application, we consider a network of 100 dmtted
RAs transporting 60 messages per minute. We assmme
addition that probably 20 reconfigurations are e=ged per
minute. Therefore, the gain in the first case (dowtion
without delegation as published [4]) is G=0,12 and with
delegation G= 0,66.

The graph of Fig. 10 shows two curves corresponttinthe
evolution of the gain in number of exchanged messam the
network of N RAs (108N<1000). The values of the abscises
axis correspond to the number of reconfiguratioquests per
minute. The curve in bleu corresponds to the gaiherwwe
apply a simple acceptance primitive (i.e. acceman€ the
highest-priority message by the CA).

International Journal of Scientific Research & Engineering Technology (IJSET)

Copyright 1PC0O-2014

0,16

0,14

0,12

0,1

0,08

0,06
0,04

0,02

0 T T T T 1
0 50 100 150 200 250

Fig. 10 Evolution of the gain in number of exchathgeessages.

The curve in red corresponds to the gain when wayap
addition to the coordination, the delegation priveit In
particular, it represents the evolution of gain whaly 10% of
messages are delegated. It is important to note theagain
increases proportionally to the percentage of debxh
messages.

In conclusion, the presence of a CA on the netwofk
distributed RAs allows obtaining a gain which deses when
the number of RAs increases. However, this gainbeanlearly
optimized when we apply the proposed extensionpatticular,
the addition of the delegation primitive to the commication
protocol allows having a gain that evolves promordlly to the
number of RAs. Consequently, the delegation allaws
ameliorate the functional safety of the whole systeven if the
CA is broken.

VI. CONCLUSION

By assuming recall and delegation primitives, weppise in
this paper a new optimization of a defined multdaiy
architecture in [4] for reconfigurable DECS. Weye the gain
of this extension by considering a formal example.new
protocol is proposed to guarantee safe and cohdistmibuted
reconfigurations at run-time according to user neguoents.
This protocol is based on reconfiguration agenfectdéd to
devices, and a coordinator as well as coordinatiatrices for a
useful coordination between devices after any riégoration
scenario. The optimized protocol is implementedhvét java-
based tool and applied to reconfigure two indulspraduction
systems, FESTO and EnAS. Different directions can
mentioned as further work. First of all, we plandmeal with a
formal verification by using UPPAAL to validate thehange
from one safe configuration to another. We pla &stest our
approach in the context of a real-time operatirgiesy.

(1]

(2]

E]

(4

(5]

(6]

(7]

(8]

El

[10]

[11]

REFERENCES

C. Angelov, K. Sierszecki, and N. Marian, “Desigrodels for
reusable and reconfigurable state machines”L.Th Yang and
All (Eds): EUC 2005 LNCS 3824, pp:152-163. International
Federation for Information Processing, 2005.

R. Brennan, P. Vrba, P. Tichy, A. Zoitl, C. SuinderStrasser, V.
Marik. “Developments in dynamic and intelligenteoefiguration
of industrial automation”. Computers in Industry| v89(6),
pp.533-547, 2008.

M-N. Rooker, C. Sunder, T. Strasser, A. Zoitl, Qunkner and
G. Ebenhofer, “Zero Downtime Reconfiguration of {Duted
Automation Systems TheeCEDAC Approach”, Third
International Conference on Industrial Application$ Holonic
and Multi-Agent SystemSpringer-Verlag, 2007.

M. Khalgui and O. Mosbahi, “Intelligent Distribute@ontrol
Systems”, Information and Software Technology, &2(12),
pp. 1259-1271, December 2010.

A. Ben Hadj Ali, M. Khalgui, and S. Ben Ahmed, “UMBased
Design and Validation of Intelligent Agents-Based
Reconfigurable Embedded Control Systems”, Inteomati
Journal of System Dynamics Applications, vol.1p),17, 2012,
ISSN: 21609772,

A. Ben Hadj Ali, M. Khalgui, A. Valentini, and S.e® Ahmed,
“Safe reconfigurations of agents-based embeddedtraton
systems”, in Proc. IECON 2011 - 37th Annual Confiere on
IEEE Industrial Electronics Society, 2011, p. 4344.

FESTO description, Martin Luther University, German
http://aut.informatik.uni-halle.de/forschung/testhe2008.

EnAS description. Martin Luther University, Germany
http://aut.informatik.uni-halle.de/forschung/enasm/, 2008.

Y. Alsafi, V. Vyatkin, Ontology-based reconfigurati agent for
intelligent mechatronic systems in flexible mantfiaing.
Robotics and Computer-Integrated Manufacturing, udeé 26,
Issue 4, Pages 381-391, August 2010.

A. Zoitl, W. Lepuschitz, M. Merdan, M. Vallee, A BleTime
Reconfiguration Infrastructure for Distributed Erdded Control
Systems, IEEE International Conference ETFA, 2010.
Industrial Process Measurements and Control Systéms.
IEC61499 2004.

