
Implementation Software and Hardware for Face

Detection
Marwa Chouchene

#1
, Haytham Bahri

#1
, Fatma Ezahra Sayadi

#1
, Mohamed Atri

#1
 , Rached Tourki

 #1

#
 Laboratory of Electronics and Microelectronics (EμE)

Faculty of Sciences Monastir Monastir, Tunisia
1
ch.marwa.84@gmail.com

1
bahri.haythem@hotmail.com

1
sayadi_fatma@yahoo.fr

1
mohamed.atri@fsm.rnu.tn

1
rached.tourki@fsm.rnu.tn

Abstract—The analysis of the video represents a significant

evolution in the field of computer • vision, especially in the field

of video surveillance. This area seeks to detect the presence of

some form, some edge ... this is the problem of detection. Among

the objects that can be detected in this area face detection.

Face detection in a fixed image without special hypothesis is a

difficult problem due to the high variability of the shape to

detect. Many techniques of detection and face recognition have

been developed in recent years and many of which are very

efficient. Among these methods, we find the method of Viola

and Jones were studied in this work. The aim of our work is to

study this method to implement on the CPU with C / C + +, then

acceleration was presented with OpenCV. Subsequently, a

second implementation in FPGA was presented

Keywords— Face detection, method of Viola/Jones, C/C++,

OpenCV, FPGA.

I. INTRODUCTION

Face detection is a new computer technology that

determines the locations and sizes of human faces in images.

It detects facial features and ignores anything else, such as

buildings, trees, bodies and any device other than the face and

so on [4] .This technology is used in many fields such as

biometrics for identification and recognition face, it is also

used in video surveillance systems and many digital cameras

use the latest face detection for autofocus.

Our work is divided into three parts: In the first part we

present the method of Viola and Jones face detection.

Subsequently a second part deals with the face detection on

C/C++. The acceleration with OpenCV is presented later, a

second implementation in FPGA was presented. Finally, we

conclude the paper.

II. FACE DETECTION

A. Generality

The methods of face detection can be classified into four

categories, [1]:

 Methods for a priori. These methods based on the rules

used to model the knowledge of what makes a face.

Typically, these rules represent relationships in facial

eatures.

 Approaches invariant features. These approaches are

based on structural features that exist even when the

pose, the view or the illumination conditions vary, and

use them to locate faces.

 Methods based models. Several standard models of

faces are used to define a face model or models of

facial features separately.

 The correlation between the image and the models is

evaluated for the presence of face.

 Methods for learning. In contrast to methods based

models, the models are learned from a set of training

images which should allow characterizing the

variability of the appearance of a face. These models

are then used to learn the detection.

B. Method of Viola Jones

Viola et al. [2] presented a fast object detection algorithm

based on a cascade simulated by simple descriptors called

"Haar-like" descriptors. They can be calculated more

efficiently by using an intermediate representation of the

image called integral image. They also proposed a method for

processing multi-stage classification which significantly

reduces the duration of the audit while achieving almost the

same accuracy compared to a classification algorithm single-

phase which is certainly much slower and more complex.

Several references show the effectiveness of this system in

terms of good detection, false alarms and speed, which is why

we have chosen to implement it. We will detail later the

detection method.

Fig. 1 Principle of method of Viola / Jones

PC
Typewriter
International Journal of Scientific Research & Engineering Technology (IJSET)

Vol.1, pp.44-47, 2014

Copyright IPCO-2014

mailto:1ch.marwa.84@gmail.com
mailto:1sayadi_fatma@yahoo.fr
mailto:1mohamed.atri@fsm.rnu.tn
mailto:1rached.tourki@fsm.rnu.tn

1) Integral image: The integra Integral image: The

integral image is defined as the summation of the pixel

values of the original image. The value at any location (x, y)

of the integral image is the sum of the image’s pixels above

and to the left of location (x, y).

2) Haar feature: Haar features are composed of either

two or three rectangles. Face candidates are scanned and

searched for Haar features of the current stage. The weight

and size of each feature and the features themselves are

generated using a machine learning algorithm from

AdaBoost. The weights are constants generated by the

learning algorithm. There are a variety of forms of features. .

Each Haar feature has a value that is calculated by taking

the area of each rectangle, multiplying each by their

respective weights, and then summing the results. The area

of each rectangle is easily found using the integral image.

The coordinate of the any corner of a rectangle can be used

to get the sum of all the pixels above and to the left of that

location using the integral image. By using each corner of a

rectangle, the area can be computed quickly.

3) Classifier: A Haar classifier uses the rectangle

integral to calculate the value of a Haar feature. The Haar

classifier multiplies the weight of each rectangle by its area

and the results are added together. Several Haar classifiers

compose a stage. A stage accumulator sums all the Haar

classifier results in a stage and a stage comparator compares

this summation with a stage threshold. The threshold is also

a constant obtained from the AdaBoost algorithm. Each

stage does not have a set number of Haar features.

Depending on the parameters of the training data individual

stages can have a varying number of Haar features.

4) Cascade: The cascade eliminates candidates by

making stricter requirements in each stage with later stages

being much more difficult for a candidate to pass.

Candidates exit the cascade if they pass all stages or fail any

stage. A face is detected if a candidate passes all stages.

III. METHOD OF VIOLA JONES ON C/C++

The Viola-Jones Object Detection Framework is a generic

framework for object detection, which is particularly

successful for face detection. In this assignment, we provide a

simplified version of Viola-Jones face detection algorithm

(figure 2). The simplified implementation does not include the

training part of the framework. The cascade classifier in

simplified implementation use pre-trained parameters for the

cascade classifier. Although the provided code is not meant to

be an optimal implementation, yet it provides reasonable

detection rate for a wide range of input images.

So following the steps of the flowchart in figure 2, we find

the following results (figure 3):

Fig. 2 Algorithm as implemented on C/C++

Fig. 2 Result of image processing on C/C++

We test our algorithm on the windows platform. Software

environment includes Microsoft Visual Studio 2008,

Hardware environment includes a consumer-level PC with an

Intel Core i5, M560 2.6GHz CPU, 4G RAM.

In order to evaluate our face detection implementation, we

measured the time taken to carry out this treatment (figure 4).

Fig. 4 Measured time of face detect on C/C++

Among the methods to calculate the execution time of a

function or a procedure, there is a profiler Visual C + +. It

provides statistics and very precise calculations. Whose

percentages execution time are extracted with respect to time

of the main function (main). With exclusive time is the time

spent in the function, while the inclusive time is the time

spent in the function and its children.

The results obtained with this profiler are given in the

following table:

TABLE I

EXECUTION TIME OF FACE DETECTION

Function name
%Application

Inclusive Time

%Application

Exclusive Time

N°=

Call

Main 99,7 40,09 1

readPgm 3,28 0,00 1

readTextClassifier 10,26 0,37 1

detectObject 43,05 0,00 1

writePgm 3,00 0,21 1

releaseTextClassifier 0,01 0,00 1

We note that the function Objectdetect is the most critical

time of execution, to accelerate our treatment, we will make a

second implementation using OpenCV library

IV. ACCELERATION BY OPENCV

OpenCV (Open Source Computer Vision Library) is a

library of programming functions mainly aimed at real-time

computer vision, developed by Intel. The library is cross-

platform. It focuses mainly on real-time image processing. If

the library finds Intel's Integrated Performance Primitives on

the system, it will use these proprietary optimized routines to

accelerate itself.

The figure below shows the flowchart used to accelerate

our treatment.

Fig. 5 Algorithm as implemented on OpenCV

This step consists in detecting the face by applying the

method based on Haar descriptors, which will start the steps

described above. This method is defined in the library

OpenCV in C as "CVHaarDetectObjects.

After compiling our application (Face Detection)

respectively on C/C++ and OpenCV, the results obtained are

presented in Table:

TABLE II
THE TIME-CONSUMING COMPARISON BETWEEN C/C++ BASED

AND OPENCV BASED ALGORITHMS

 OpenCV

Time (s)

C/C++

Time (s)

Read image 0,003 0,011

Download Cascade

Classifier

0,06 0,036

Detection 0,064 0,11

Display results 0,001 0,01

Total 0,128 0,167

0
10
20
30
40
50

T
im

e
m

s

V. IMPLEMENTATION ON FPGA

FPGA can achieve extremely high performance in many

applications in spite of its low operational frequency.

In this context we will define a methodology to implement

automatically and optimize algorithms for image processing

in complex electronic systems.

We conducted a second implementation in VHDL on

embedded platform to reduce the execution time. The

previous algorithm was translated into VHDL, it has an entity

consisting of 5 input ports.

The architecture of this algorithm contains 7 components

that contain the values of the classification functions of the

AdaBoost learning algorithm. Our architecture also contains 7

process.

Fig. 6 Architecture of the block of face detection in VHDL

After the simulation (figure 6), the next step is to

synthesize the hardware description for a component

performing the desired functions, using concrete logic

elements.

For the development of our work, we choose to use the

synthesizer "Xilinx ISE .9" as a synthesis tool.

To realize the hardware implementation, much technology

architecture synthesis is implemented. The synthesis phase of

our application was assessed on FPGA Spartan3A: type

XC3S200A, package FG320 and degree speed -5.

Completion of the synthesis gives us the following results

(Table III)

TABLE IIII

SPACE OCCUPIED IN FPGA

 Used Available Percentage

Number of Slice Registers 7830 1792 436%

Number of Slice Flip Flops 6978 3584 194%

Number of LUTs 8645 3584 241%

Number of bonded IOBs 55 248 22%

Number of BRAMs 25 16 156%

Number of

MULT18X18SIOs

3 16 18%

Number of GCLKs 3 24 12%

The parameters of our application are:

The period of the clock: 9.675ns (frequency: 103.363MHz)

t = number of cycles x period of a cycle = 2590 x 9675 x

10 -9 = 25058.25 ns.

The FPGA implementation also uses a custom circuit to

return first compared C++ and OpenCV

VI. CONCLUSIONS

In this work, we reviewed one of the most basic methods

for face detection. This method was a variant of the popular

Viola & Jones method based on rectangular haar-like features,

as described by Viola and Jones.

Different implementations were made: one using C / C + +,

the second on OpenCV , and the latter on FPGA to accelerate

processing.

REFERENCES

[1] M-H Yang, D. J. Kriegman et N. Ahuja, Detecting Faces in Images : A

Survey, IEEE Transaction on Pattern Analysis and Machine

Intelligence, vol. 24, no. 1, pp. 34-58, Jan. 2002.
[2] P. Viola et M. Jones, Rapid object detection using boosted cascade of

simple features, Proceedings IEEE Conf. on Computer Vision and

Pattern Recognition 2001.

