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Abstract:The present research points towards the empirical 

validation of three options valuation models, the ad-hoc 

Black-Scholes model as proposed by Berkowitz (2001), the 

constant elasticity of variance model of Cox and Ross (1976) 

and the Kou jump-diffusion model (2002). Our empirical 

analysis has been conducted on a sample of 12,499 options 

written on the SP 500 index that were negotiated during the 

year 2007 just before the sub-prime crisis. We start by 

presenting the theoretical foundations of the models of 

interest. Then we use the technique of nonlinear least squares 

to estimate the structural parameters of these models from 

cross-section of option prices. The empirical analysis shows 

the superiority of the Kou jump-diffusion model which arises 

from itsability to portray the behavior of market participants 

and to be closest to the true distribution that characterizes the 

evolution of these indices. Indeed the double-exponential 

distribution covers three interesting properties that are:  the 

leptokurtic feature, the memory less property and the 

psychological aspect of market participants as numerous 

empirical studies have shown that markets tend to have both 

overreaction and under reaction over good and bad news 

respectively. 

Keywords:Stock Index Options, U.S. Market, Leptokurtic 

Feature, Jump-Diffusion Process, Kou Model, Nonlinear 

Least Squares. 

I. Introduction 

Theoretical models that are interested in evaluating 
options are generally based on two key elements: the 
process of the underlying asset and the market price of the 
risk factor. The Black-Scholes model is based on the 
assumption of a lognormal diffusion process with a 
constant instantaneous volatility. Being the benchmark for 
derivative assets valuation, this model has been, during the 
last thirty years, the target of several empirical studies that 
have revealed a number of limitations. On the one hand, 
the assumption of log normality of the underlying asset has 
been widely rejected by the ARCH literature. On the other 
hand, the assumption of a diffusion process was also 
rejected by the existence of heavy tails of the distribution 
of returns. Finally, the effect of debt raised by Black (1976) 
and the existence of a possible correlation between the 
process and the volatility of the underlying asset, Heston 
(1993), Nandi (2000), indicated a complex relationship 
between asset returns and volatility. These empirical limits 

pushed theorists to develop alternate models. Research 
undertaken thereafter considered three approaches: 

- The univariate models: These are models that have 
maintained the no-arbitrage assumption of the Black -
Scholes model, but gave up the assumption of Geometric 
Brownian Motion. Included are the Constant Elacticity 
Variance model (CEV) of Cox and Ross (1976) and Cox 
and Rubinstein (1983) and more recently the trinomial or 
implied binomial tree models of Derman and Kani (1994) 
and Dupire (1994). 

- The stochastic volatility models: These models are 
based on the assumption of a volatility of the underlying 
asset evolving in a stochastic manner by following a 
diffusion process, Heston (1993), Hull and White (1987), 
Wiggins (1987), and the hybrid jump-diffusion process of 
Duffie and al. (2000). 

- The Jump diffusion models: thathas replacedthe 
underlying asset classical diffusion process. Out of which 
The Merton Model (1976) remains the most popular. 

Very recent studies have attempted to combine these 
three approaches, such as studies by Jones (2003) and 
Skiadopulos (2000) who have respectively proposed a 
stochastic generalization of the CEV process and the 
binomial tree model. 

This paper proposes to compare the empirical 
performance of three alternatives to the Black-Scholes 
model that belong to three different classes. First, the ad-
hoc Black-Scholes model that is praised by practitioners 
for its simplicity and effectiveness. It is simply the Black 
Scholes classical model with a daily implied volatility 
calibration from option pricing. Although such procedure 
seems unorthodox and inconsistent with the assumptions of 
the Black-Scholes classical model, it provides quite 
suitable results in the evaluation of options1. The second 
model is the Constant Elasticity of Variance model 
developed by Cox and Ross (1976) better known by the 

                                                 
1In a famous article entitled "How to get the right option 
price with the wrong model?"Berkowitz (2001) showed 
that, thanks to the daily volatility calibration, the Ad Hoc 
BS model arrived to provide close performances to those of 
stochastic volatility models in terms of evaluation"in 
sample". 
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abbreviation CEV model that belongs to the class of 
univariate models. The third alternative is the jump- 
diffusion model of Kou (2002) which proposes a hybrid 
process for the underlying asset, consisting of a first 
“diffusion” component the same as in the Black Scholes 
model and a second “jump” component following a double 
exponential process. Such a model allows us to understand 
two major empirical phenomena: The Kou model leads to a 
probability distribution with heavy tails (a 
frequentlyobserved phenomenon of the underlying 
assetsdistributions) which simply means a greater 
probability for extreme values. Then the Kou model is able 
to integrate the phenomenon of negative skewness (more 
probability for negative outcomes) through the jump signs2. 

The empirical approach will be structured as follows: 
We begin by presenting the structure of the database used 
in this study. Options traded on the Chicago Board Options 
Exchange during the year 2007 for the SP 500 stock index 
for a total of 12,499 call options. Thenwe conducta 
comparative analysis betweenthe ad hoc BS, the CEV 
model and the jump-diffusion Kou model.This 
analysisaims to verifythevalidity of the assumptionsmade 
byeach of these models by comparingthe modelpricesto 
market options prices.The comparative analysiswill 
alsodetectany structuralbias thatwould affect 
theperformanceofeach of the three theoretical models. 

II. The Constant Elasticity Variance model of Cox and 
Ross (1976) 

Cox and Ross (1976) developed a pricing model of calls 
that verifies the negative relationship between return 
volatility of the underlying asset and its price. In this 
model, the variance of returns is a deterministic function of 
the underlying asset price and its elasticity with respect to 
price is constant. Specifically, the model assumes that the 
instantaneous rate of return of the underlying asset evolves 
according to the following process: 

dzSdt
S

dS
⋅⋅+⋅= −1θδµ                    (1) 

µis the drift rate of the underlying asset return, 
δ.Sθ-1is theinstantaneousstandard deviation of the 

underlying asset return withδ a strictlypositive constant, 

dz  : is astandardWienerprocesswhichfollows a 

normaldistribution with expectation ( ) 0=dzE  and variance

( ) dtdzVar = . 

The major difference with the Black-Scholes model is 
that the volatility of returns of the underlying asset δ.Sθ-1 is 
based on the price of the asset. However, If θ = 1, the CEV 
model coincides with the Black –Scholes model. Whereas, 
when θ deviates from 1, the process that characterizes the 
underlying asset becomes non-stationary. The negative 

                                                 
2By proposing negative jumps for the underlying asset 
return, the model affects more probability for negative 
achievements. 

correlation between asset prices and volatility, as 
evidenced by several empirical studies will be checked 
only if θ < 1.  

However, this model continues to consider the 
parameters δ and θ as constants, which does not seem to be 
a very realistic assumption especially when it comes to 
evaluating options on stock indexes. Indeed, if one refers to 
the idea of a constant negative elasticity, we could end up 
in a vicious circle, since any decline in the stock index will 
increase volatility. This latter increases market fears and 
causes a further decline in the index. With such a 
mechanism, we may end up with a volatility that tends to 
infinity along with a stock index which tends to zero. Such 
a situation is unlikely. One solution to this problem would 
be to recalibrate the CEV model on a periodic basis to 
update its δ and θ structural parameters3. 

III. The jump-diffusion model of Kou (2002) 

The model is quite simple in its logic. The logarithm of 
theunderlying asset priceis assumed to followa hybrid 
jump-diffusion process. The first component of the process 
is similar to that of Black- Scholes geometric Brownian 
motion. The secondcomponent correspondsto 
a"Poisson"process jumpswith amplitudesdistributed 
according to thedouble exponential distribution.The model 
assumesthat the underlying asset priceevolves according 
tothe following process: 
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W(t) isastandardBrownian motion, 

N (t) isa Poisson processwithafrequency λ , 

{ }iV isasequenceof positive random 
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η1> 1 and η2> 0 
Where p,q≥0, p+q=,1 represent the probabilities of 

upward and downward jumps. The drift µ and the volatility 
σ are assumed to be constants and the Brownian motion 
and jumps are assumed to be one dimensional. 

In other words, 
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Where
+ξ and

−ξ are two exponential 

randomvariableswith means1/η1and1/η2, respectively, and 

                                                 
3Like the ad hoc BS model, we proceed to the daily 
calculation of the structural parameters of the CEV model 
from option prices. For the remainder of this article, we 
will denote model with calibration by CEV. 
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the notation 
d

= means equalin distribution.Yis the 
randomvariablerepresenting thejumpsthat may affect 

theunderlying asset rate of returns.
+ξ and

−ξ are 

respectivelythe amplitudes of theupward and 
downwardjumps. 

E(Y) = (p/ η1)-(q/ η2) istheaverageamplitudeof the jump. 
Var(Y) = p.q. (1/η1 + 1/η2)

2 + [(p/ η1
2) + (q/ η2

2)] is part 
of thevolatilityof the underlying assetdue tojump risk. 

This will provide: 

Var (S) = σ2 + Var (Y)          (5) 

There are three interesting properties of the double 
exponential distribution which are fundamental to the 
model. First, the distribution has the leptokurtic feature. 
This feature that governs the jump size distribution is 
consistent with the empirical distribution that characterizes 
the underlying asset rate of return. Then, the double 
exponential distribution has the memory less property. In 
other words, the current achievements depend, in one way 
or another, on the past achievements. Finally, this 
distribution has a psychological and economic justification. 
Indeed, it has been demonstrated through several empirical 
studies that markets tend to have an overreaction and 
under-reaction towards various good or bad news, Fama 
(1998), Barberis et al. (1998). We can then interpret the 
jumps as a market response to new external market 
information. Thus, in the absence of external information, 
the price of the underlying asset should move according to 
a Brownian motion. Good or bad news occur according to a 
Poisson process and the price of the underlying asset 
changes in response to this news, according to the 
distribution that governs the size of the jump. This 
distribution can be used to model the overreaction (through 
heavier tails) and the under-reaction (through a larger 
peak). Therefore, the diffusion model with double 
exponential jumps can be interpreted as an attempt to build 
a simple model within the traditional framework of random 
walk and market efficiency that takes into account 
investor’s attitudes towards risk as well. 

The European call valuation formula, according to the 
Kou jump-diffusion model, is given by: 
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X: the probability function of the Kou jump-diffusion 
model  
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The Kou model also presents analytical solutions for the 
evaluation of American options, look back options, and 
other exotic options. 

IV. Overview of the Database 

The final sample used concerns 12,499 call options on 
the SP500 stock index traded on the Chicago Board 
Options Exchange (CBOE) during.  

TABLE I – PROPERTIES of the FINAL SAMPLE of the SP500 

CALLS 

Prices reported in the table respectively represent the calls mid-price, 

the effective spread (defined as the difference between the bid and ask 

price of the option divided by its average price) and finally the total 

number of observations for each sample subcategory moneyness / 

time-to-expiration. The sample period is spread over the whole of 

2007 for a total of 12,499 observations. The moneyness equals (S-K.e-

r.t)/K.e-r.t. S means the spot level of the SP 500. K stands for the strike 

price, (r) for the risk-free interest rate which corresponds to the 

maturity of the call and (t) the call time-to-expiration. OTM, ATM 

and ITM calls denote the out-of-the-money, at-the-money and in-the-

money options. 

 
Moneyness 
(%) 

Time-to-expiration (days)  

6-30 31-60 61-100 
Sub-
total 

      
OTM [-10;-6]             $0.67 $1.1 $2.31  
  0.482 0.408 0.305  
  33 363 599 995 
      
 [-6;-3] $1.3 $3.72 $7.84  
  0.317 0.194 0.136  
  571 843 521 1,935 
      
ATM [-3;0]                  $5.75 $12.74 $20.11  
  0.149 0.103 0.083  
  1,221 1,089 581 2,891 
      
 [0;3]                   $22.94 $29.6 $37.31  
  0.073 0.064 0.053  
  1,147 1,012 549 2,708 
      
ITM [3;6] $82.34 $84.58 $89.13  
  0.024 0.024 0.022  
  693 730 502 1,925 
      
 [6;10]                  $49.68 $53.88 $59.95  
  0.039 0.037 0.033  
  831 755 459 2,045 

Sub-
total 

 4,496 4,792 3,211 12,499 

 
The final sample is obtained by applying five filters. 

First, all the options with an average price less than 50 
cents were removed. Then the options with a spread4 that 
represents more than 50 % of the average call price are 
removed. These first two filters are meant to eliminate calls 
with a large spread in relation to bid-ask quotations 
reported by the database. We also removed options with a 
moneyness which deviates from the range [-10 %, 10 %]. 
Indeed, the options that are deep out-of -the-money (OTM) 
or deep-in -the-money (ITM) are illiquid and have a low 
time value which substantially affects the predictive power 
of the estimated parameters value. Next, we eliminated 
options with less than 6 days or over 100 days to 

                                                 
4The spread of an option is defined as the difference 
between the ask price and bid price divided by the mid-
price of this option. 
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expiration. The former have almost zero time premiums 
while the latter are illiquid. Finally, all options that do not 
meet the no-arbitrage assumption are eliminated. The 
majority of observations eliminated correspond to deep 
ITM calls. 
Table I describes the properties of the final sample of SP 
500 calls to be used for our empirical study. The sample is 
dominated by ATM options with 5,599 observations (44.8 
% of the final sample) followed by ITM options with 3,970 
observations (31.7 % of the sample) and finally OTM 
options with 2,930 observations (23.5 % of the sample). 
Referring to the criterion of time to expiration, we realize 
that the sample is dominated by options of short and 
medium term maturities with respectively 4,792 (38.3% of 
the sample) and 4,496 observations (36 % of the sample). 
The long-term options represent only 25.7% of the final 
sample with 3,211 observations. The average price of SP 
500 calls varies from $ 89.13 (deep ITM options at long 
term) to $ 0.67 (deep OTM options at short term). The 
spread ranges from 2.2% of the call mid-price (ITM call at 
long term) to 48.2% (deep OTM call at short term). 

V. Parameter Estimation and Performance Models 

In order to have a clearer view of the limits of the Black-
Scholes model, we represented the evolution of the implied 
volatility as a function of moneyness and time-to-maturity 
for two days arbitrarily chosen in our sample. We then 
obtained two surfaces of the implied volatility that 
highlight the dual structural bias plaguing the BS model 
(Figure 1).  

Indeed, referring to these surfaces, we realize that the 
implied volatility generated from the BS model is not 
unique in space or constant in time, which is inconsistent 
with the hypothesis of log normality of the price of the 
underlying asset on which is based the Black-Scholes 
model. 

The most dramatic change in the volatility is recorded 
for short term options with a volatility smile where OTM 
and ITM options show higher volatilities than ATM 
options. Any theoretical model, which presents itself as a 
serious alternative to the BS model, should provide a 
significant improvement mainly to short term options. As 
the time-to-expiration increases, the change in implied 
volatility becomes more moderate with a decreasing pace, 
commonly called the sneer where the most ITM options 
show the highest volatility. 

As both phenomena smile and sneer are synonymous 
with a probability distribution with negative skewness and 
excess kurtosis, any acceptable alternative model to BS 
should propose a distribution that integrates these two 
aspects. Thus, one can moderate the effect of the time-to-
expiration and the moneyness as two generating sources of 
estimation bias. 

 
Fig 1.a. SP 500 calls Implied volatility surface, January 2, 2007 

 
Fig 1.b. SP500 calls implied volatility surface, August 16, 2007 

Figure1. The figure shows two surfaces of the implied volatility for 

two separate days in the sample. The surface traces the evolution of 

volatility across different levels of moneyness and time-to-expiration. 

Each point on the surface corresponds to an implied volatility 

obtained through reversing of the Black-Scholes formula. 

 

A. Alternate models Parameter Estimation 

A solution to the parameters estimation problem would 
be to use the maximum likelihood or generalized method of 
moments to identify these estimates from the history of the 
underlying asset. Such a solution can be binding as it 
requires the collection of a large volume of historical data 
that eventually leads to low predictive power estimates. In 
order to address this gap, practitioners and researchers have 
chosen to derive the estimates of the structural parameters 
from observed option prices. This solution has introduced 
the concept of the implied volatility for the BS model. 
However, the application of such a technique is more 
complicated with models that involve several structural 
parameters at the same time and using much more 
developed mathematical tools than for the case of the BS 
model.  

For this study, we chose to derive the estimates of the 
structural parameters of the Kou model from instant cross 
sectional price of options for each day of the sample using 
the nonlinear least squares. Such a technique can 
significantly reduce the number of observations required to 
estimate and leads to a significant improvement in the 
performance of the evaluation models, Bates (1996 a, b) , 
Dumas et al. (1998 ), Bakshi et al . (1997), Melino and 
Turnbull (1995). The estimation procedure is as follows: 
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Step 1: For a well-defined sample, we collect m options, 

such as m is greater than or equal to (n +1) where n is the 
number of parameters to estimate. In the case of the Kou 
model, n = 4. Ci_market is the market price of the ith call. 
Ci_kou is the theoretical price of the ith call calculated using 
the Kou model. The difference between these two prices 
will depend on the vector { }21,,, ηηλσφ = . For each option 

(i), we define: 

( ) ( )iiKouiiimarketii KtCKtC ,,,,)( __ ττφε −=          (9) 

 
Step 2: We find the vector of parameters that minimizes 

the sum of squared errors between the observed prices and 
the theoretical prices of options. 

2

1

)(min∑
=

≡

N

i

iSSE φε
φ

        (10) 

These two steps are repeated for each option and for 
each day in our sample. The objective function SSE is 
defined as the sum of squared errors, in dollars, of call 
options prices.  

The use of nonlinear least squares should provide a fair 
comparison between the three models (from as we obtain 
structural parameters estimated through option prices for 

both the ad hoc BS model (implied volatility) CEV ( δθ, ) 

and Kou’s jump-diffusion ( 21,,, ηηλσ ). 

B. Results of the Estimation 

Estimates of the structural parameters of the CEV and 
the Kou jump- diffusion models are included in Table II. 

TABLE II: ESTIMATION of STRUCTURAL PARAMETERS for 

the CEV and KOU MODELS 

The table brings forward the estimates and the corresponding 

standard deviation for each model parameters. θ and δ are the 

structural parameters of the CEV model and correspond to the 

elasticity of volatility and to a positive scalar. σ, λ, η1, η2are the 

structural parameters to be estimated for the model of Kou. σ 

designates the portion of the volatility generated by the diffusion 

process component. λ refers to the average number of jumps per year 

. η1 and η2 respectively control the amplitude of upward jumps (η1) 

and downward jumps (η2). The average amplitude is equal to p/η1-

q/η2. p and q denote the probabilities of an upward or a downward 

jumps. p = q = 0.5. 

Parameters 

 CEV  Kou 

 
Mean 

Std 
deviation 

 
Mean 

Std 
deviation 

θ  0.8963 (0.0429)    
δ  0.2036 (0.0481)    
σ     0.1024 (0.011) 
λ     3.514 (1.174) 
η1     379.179 (180.957) 
η2     13.746 (3.112) 

For the CEV model, estimates show a poor negative 
correlation between the level of the SP 500 index and its 
volatility. Indeed, as θ tends to 1, the CEV model tends to 
the Black- Scholes model. Such a result is quite logical 
since the SP 500 index representing the U.S. equity market 
has strongly rebounded after the technology bubble and 
volatility indices have stabilized afterwards. This may 

explain the poor negative correlation generated by the 
nonlinear least squares, which only reflect the renewed 
confidence of market participants. 

For the Kou Jump -Diffusion model, estimates are 
quite reasonable for a fairly diversified stock index, such as 
the SP 500, especially during stable times. According to the 
estimation results, the market participants anticipate to 
achieve an average of 3.514 jumps per year with average 
amplitude of -3.51 % per jump. The overall average 
volatility that is measured by the variance represents 1.44 
% (being a standard deviation of 11.98%), distributed 
between 1.05% to the "diffusion" component (or standard 
deviation 10.24 %) and 0.39 % for the "jumps" component 
(being a standard deviation of 6.23%) . In other words, the 
diffusion process contributes to 73% in the overall risk of 
the underlying asset against only 23% for the "jumps" 
component. 

C. Performance Models 

Three criteria were used to conduct a comparative 
analysis between the three models: 

- The mean squared errors: This is the average of the 
squared differences between the observed price of the 
option and its theoretical price calculated using each of the 
three models. This measure gives more weight to in-the- 
money calls compared to other options in the sample. 

- The mean absolute error: At first, the absolute value 
of the difference is calculated for each option between the 
observed mid-price of the option and its theoretical price. 
Then, the average difference was reported at the observed 
mid-price. This will calculate the percentage of the 
estimation error for each model. Such a measure tends to 
give greater weight to evaluation errors related to the calls 
out-of -the-money at the expense of other options. 

- The frequency: This is the number of times where 
each model has led to the estimation error (mean absolute 
error) that is lowest compared to the other two models. 

This comparative analysis will be conducted by sub-
sample "moneyness / time-to-expiration" instead of testing 
the performance of the three models for the entire sample 
as a single compact component. Such an approach should 
allow a better understanding of the elements that may 
represent sources of estimation bias for our theoretical 
models.  

Tables III, IV and V summarize these criteria divided 
into 9 sub-samples that are usually based on the moneyness 
and time-to-expiration. The jump-diffusion model of Kou 
largely outperforms the CEV and ad hoc Black-Scholes 
models for all subcategories of the table. The superiority of 
the model becomes more evident as one moves away from 
the at-the -money calls and notably for in-the -money ones 
where the average relative error records its lowest level 
throughout the sample. This result was predictable since 
the Kou model was the only one of the three models 
studied to take into account the aspect of the leptokurtic 
distribution of the underlying asset. Thus, excess kurtosis 
can be integrated via the amplitude and frequency of jumps 
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while the negative skewness was present throughout the 
anticipated jump sign (negative jumps). 

We also note that the performance of the model does not 
seem to suffer a lot from moneyness or time-to-expiration 
changes. The performance of the Kou model can be 
explained by several factors. First, the choice of a double 
exponential distribution, which characterizes the jumps, 
has improved the quality of estimates since it is more likely 
to reflect the extreme. Then, the technique of the structural 
parameters estimation of the model based on the nonlinear 
least squares has identified estimates based on option 
prices rather than time series of returns of the SP500 index. 

TABLEIII: In-SAMPLE PERFORMANCE EVALUATION 

MODELS – KOU MODEL 

This table shows the three criteria used to assess the quality of the 

estimate of the jump-diffusion Kou model. These three criteria are, in 

order of appearance in the table, the mean squared errors, the mean 

absolute error and the frequency (in parentheses). 

Moneyness 
 Time-to-expiration 

 6-30  31-60  61-100 

OTM [-10;-6]             0.101  0.045  0.09 
  46.5%  18.8%  11.04% 
  (15)  (322)  (556) 

 [-6;-3] 0.058  0.095  0.147 
  18.6%  8.87%  3.83% 
  (456)  (642)  (431) 

ATM [-3;0] 0.123  0.114  0.188 
  6.52%  2.45%  1.72% 
  (1102)  (1040)  (493) 

 [0;3] 0.169  0.096  0.232 
  1.57%  0.82%  0.97% 
  (881)  (824)  (380) 

ITM [3;6] 0.191  0.14  0.255 
  0.55%  0.49%  0.64% 
  (630)  (644)  (401) 

 [6;10] 0.311  0.309  0.2 
  0.47%  0.5%  0.39% 
  (449)  (530)  (464) 

 
Now let’s examine the performance of the Constant 

Elasticity Variance (CEV) model. We note that even 
though we have applied the same method to estimate the 
Kou model5 and have made a daily calibration of the 
structural parameters, the performance of the CEV model 
remains widely below those of the Kou model. 

The CEV model provides the worst results for in-the -
money options where he concedes the second position to 
the ad hoc BS model for both short-term options, medium 
and long-term options. We can explain this result by the 
poor negative correlation between the index level and its 
volatility especially that we know that 2007 was a 
relatively “quiet” year6. This could be explained by the 

                                                 
5The estimate of the model structural parametersis made 
with nonlinear least squares technique using cross sectional 
SP 500 options prices. 
6The inverse relationship between the price of the 
underlying asset and its volatility was first introduced to 
the options with the argument of the leverage effect. In the 
absence of such an effect for indexes, the only plausible 

inability of the CEV model to figure kurtosis excess that 
has always characterized the performance of indexes. 

TABLE IV: In-SAMPLE PERFORMANCE EVALUATION 

MODELS – CEV MODEL 

This table shows the three criteria used to assess the quality of the 

estimate of the CEV model. These three criteria are, in order of 

appearance in the table, the mean squared errors, the mean absolute 

error and the frequency (in parentheses). 

Moneyness 
 Time-to-expiration 

 6-30  31-60  61-100 

OTM [-10;-6]             0.339  0.568  1.22 
  88.1%  70.1%  55.2% 
  (0)  (4)  (31) 

 [-6;-3] 0.332  0.646  1.236 
  46.2%  24.5%  14.9% 
  (66)  (189)  (88) 

ATM [-3;0] 2.731  3.668  3.297 
  26.3%  14.1%  7.6% 
  (108)  (42)  (50) 

 [0;3] 2.231  2.032  1.862 
  6.6%  4.6%  3.1% 
  (148)  (68)  (78) 

ITM [3;6] 2.669  8.489  16.318 
  2.8%  5.1%  6.4% 
  (94)  (4)  (0) 

 [6;10] 1.167  5.116  19.862 
  1%  2.4%  4.7% 
  (118)  (75)  (4) 

 
 

TABLE V: In-SAMPLE PERFORMANCE EVALUATION 

MODELS– AD HOC BS MODEL 

This table shows the three criteria used to assess the quality of the 

estimate of the ad hoc BS model. These three criteria are, in order of 

appearance in the table, the mean squared errors, the mean absolute 

error and the frequency (in parentheses). 

Moneyness 
 Time-to-expiration 

 6-30  31-60  61-100 

OTM [-10;-6]             0.451  4.654  14.189 
  71.3%  146.8%  142.3% 
  (18)  (37)  (12) 

 [-6;-3] 3.856  12.731  26.815 
  129.8%  103.4%  55.4% 
  (49)  (12)  (2) 

ATM [-3;0] 8.254  18.894  26.268 
  62.7%  30.5%  17.6% 
  (11)  (7)  (38) 

 [0;3] 5.09  13.89  24.173 
  8.3%  7.9%  7.1% 
  (118)  (106)  (91) 

ITM [3;6] 1.573  5.785  14.107 
  1.9%  2.8%  3.9% 
  (107)  (107)  (58) 

 [6;10] 0.921  2.884  7.501 
  0.9%  1.5%  2.3% 
  (113)  (125)  (34) 

Finally, the ad hoc Black-Scholes model has usually a 
good performance for at-the-money short term options. For 
in-the-money options it provides the best performance 

                                                                                 
argument to explain this inverse relationship would be the 
panic effect in the presence of downside market 
movements. 
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ahead of the CEV model and rivaling with  the Kou model 
which is another less expected result. Once more, this 
result confirms that the short term in-the -money options 
are less sensitive to the choice of models and structural 
parameters. 

However, as one moves towards out-of -the-money 
options, the generated results are deteriorating in a 
spectacular way including a time-to-expiration above 30 
days. Unfortunately, the daily calibration of volatilities was 
not able to offset these biases due to the unrealistic 
assumption of the lognormal asset price. Such a hypothesis 
is unable to integrate the phenomena that are empirically 
proved of high kurtosis and non-zero skewness. 

D. Estimation errors and regression 

We conduct a regression analysis to identify the factors 
responsible of the estimation errors for all the three models. 
By estimation error, we mean the mean absolute error ��(�) 
which is a function of ���	
�	���(�) the degree of 
moneyness, ��(�) the time to expiration, and of 
�
�	���(�)the spread relative to the ith call observed at 
date (t). This regression performed using the technique of 
ordinary least squares will cover all 12,499 SP500 calls. 
The regression equation is of the following form: 

��(�) = �� + �� ∙ ���	
�	���(�) + �� ∙ ��(�) + �� ∙

�
�	���(�) + ��(�)   (11) 

Regression for SP500 options shows that, regardless of 
valuation models, all variables have a significant 
explanatory power at the confidence level of 1% estimation 
errors. In other words, the estimation errors of the three 
valuation models are, in part, due to moneyness, time-to-
expiration or spread bias. 

The magnitude of this bias differs, however, from one 
model to the other. The moneyness bias is the highest for 
the ad hoc Black-Scholes model. The percentage of the 
estimation error for this model is expected to increase by 
5.347 points every time the moneyness decreases by one 
point. Yet, the bias of the moneyness decreases with the 
CEV model. Hence, the error estimation should increase by 
1.517 points every time the moneyness decreases by one 
point. That is to say that the CEV model offers a better 
diffusion process than the ad hoc Black-Scholes model. 
Finally, the bias of moneyness is lower for the Kou jump- 
diffusion model. The error estimation of this model should 
increase by only 0.319 points every time the moneyness 
decreases by one point. This improvement is due to a better 
process modeling of the underlying asset, thus a better 
volatility estimate thanks to the introduction of jumps in 
addition to the diffusion process. 

The bias of the residual time is much more discreet than 
the moneyness for all of the three models. This is due to the 
daily calibration which allows updating the structural 
parameters. Such a result is consistent with other studies 
that have shown that with such a calibration, the Black- 
Scholes model was able to mimic, in an acceptable manner, 

the stochastic volatility models, Bakshi et al. (1997), Bates 
(2003), Berkowitz (2001). 

 

TABLE VI: REGRESSION RESULTS 

The table shows the regression results for(11). The regression is 

performed for each of the 3 models using all 12,499 SP500 calls which 

constitute our sample. The sample period spans 2007. The coefficient 

estimates appear in the first line for all 3 models. Figures in 

parentheses are standard deviations of the estimates. *** to mean that 

the estimate is significant to the 1% error. ** to indicate that it is 

significant to the 5% error . 

Models 

Parameters 

R2 Constant Moneyness Time spread 

Ad hoc 
BS 

0.233*** -5.347*** -0.207** 1.879*** 

0.306 

(0.023) (0.272) (0.098) (0.155) 

CEV 

0.085*** -1.517*** -0.113*** 0.848*** 

0.604 

(0.004) (0.055) (0.019) (0.027) 

KOU 

0.023*** -0.319*** -0.128*** 0.325*** 

0.438 

(0.002) (0.025) (0.009) (0.015) 

 
 
The same observation is valid for the CEV model that 

has been able best to mitigate the time-to-expiration bias 
factor. This performance is due to two factors. First, the 
daily calibration of the model parameters has been updated 
daily. Then, using the process proposed by the CEV model, 
the volatility does not change in a purely stochastic manner 
but is inversely related to the price of the underlying asset, 
as demonstrated by several empirical studies, Heston and 
Nandi (2000), Jones (2003), Nandi (1997). 

VI. Conclusion 

The present work was interested in empirically 
validating three evaluation options models, the ad hoc 
Black- Scholes model, the Cox CEV model and the Kou 
jump-diffusion model using call options, negotiated during 
the year 2007, on the SP500 index. The Constant Elasticity 
of Variance model uses a diffusion process with the 
volatility which is a deterministic and inverse function of 
the underlying asset price. The Kou model offers 
meanwhile a hybrid model with a hybrid jump-diffusion 
process where volatility evolves in a stochastic manner. 

In order to perform these calculations, we must first 
estimate the structural parameters for all of the three 
models. To do so, we choose the nonlinear least squares 
econometric technique on cross sectional option prices. 

A comparative analysis between the three models, based 
on the evaluation of the theoretical price of 12,499 options 
on the SP500 shows a clear superiority of the Kou jump-
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diffusion model which vastly outperforms the two other 
models for the entire sample. This result shows that the 
implied distribution over the underlying asset is generally 
different from the objective distribution. The first is 
determined by the mood of market participants and their 
expectations for the future, while the second is simply 
based on the history of the underlying asset price without 
considering the psychological aspect of market 
participants. 
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