

New Heuristic for the Single Container Loading

Problem
Safa Bhar Layeb

1
, Omar Jabloun

2
, Amel Jaoua

3

University of Tunis El Manar, National Engineering School of Tunis

UR-OASIS: Optimization & Analysis of Service and Industrial Systems

BP 37 Le Belvédère, 1002, Tunis, Tunisia
1
Safa.Layeb@enit.utm.tn

2
omar.JABLOUN.2@gmail.com
3
amel.jaoua@polymtl.ca

Abstract— Solving the Single Container Loading Problem

(SCLP) remains a relevant issue in the transportation and

logistics industry. It is faced by the majority of distribution

centers and warehouses. The SCLP seeks to pack three-

dimensional boxes into a three-dimensional container in order to

maximize the total volume utilization.
For this challenging problem, we propose a new greedy two-step

look-ahead procedure by selecting a free space deterministically

followed by a block search. We also generalized the proposed

heuristic to the single container loading problem with additional

constraints to deal with realistic situations.

In order to evaluate its computational performance, the

proposed procedure is implemented and tests are carried out on

over than 1600 benchmark instances. Our approach performs

very well comparing to the most known heuristics from the

literature.

Keywords— Transportation, Packing, Container loading,

Heuristic, Block-building.

I. INTRODUCTION

Loading rectangular boxes into containers (pallet, Truck,

railway …) is a common basic activity in material handling.

The usage of containers to pack products has grown hugely in

recent years. According to the 2014 annual market review of

“Alpha liner” [1], the container ship capacity has grown by a

rate equal to 6.3%. Thus, a problem faced by the majority of

distribution centers and warehouses is how to load efficiently

different items in a single container. Actually, the random and

manual packing patterns produce nonstable loading plans

leading most of the cases to damages and returns. To address

this issue, many recent studies in transportation deal with the

Single Container Loading Problem (SCLP).
 The SCLP is modeled as an orthogonal packing of

rectangular items. The large rectangular parallelepiped is

called container and the smaller ones are called boxes or

cuboids. It seeks to pack three-dimensional boxes into a three-

dimensional container in order to maximize the total volume

utilization. Not surprisingly, this challenging problem is

known to be an NP-hard problem in the strict sense.

The scope of this work is to propose for this challenging

problem a new competitive heuristic method that provides

very good solutions in very reasonable computing times. In

order to reflect realistic situations, we generalized the

proposed framework to fit the weight distribution, stacking,

and positioning constraints.

The remainder of this paper is organized as follows. In

section 2, we present the project context of this work. In

section 3, a literature review is proposed for the SCLP. Then,

in section 4, we describe the proposed heuristic procedure. In

section 5, we report the results of extensive computational

experiments carried out on well-known instances from the

literature.

II. PROJECT CONTEXT

Systems, Applications and Products in Data Processing

(SAP) [2], is the leader in enterprise resource planning (ERP)

in terms of software and software-related services. Although,

The SAP and its related products, the Extended Warehouse

Management (EWM) [2], optimize during the different stages

of the supply chain management (automatic replenishment,

yard management…). When it comes to packing in the

outbound delivery, there is no algorithm implemented to load

efficiently different items in a single container. Unfortunately,

random and manual packing patterns produce non stable

loading plans leading most of the cases to damages and

returns.

In this context, this study is part of a development project

aiming to provide a planning procedure when loading single

container with mixed products (items with different sizes and

dimensions) in the EWM service module of SAP. We are

dealing with a problem faced by the majority of distribution

centers and warehouses. The objective is to propose and

Admin
Typewritten Text
International Journal of Economics & Strategic Management of Business Process (ESMB)
Vol.8, Issue 1, pp. 1-7
Copyright IPCO-2017

Admin
Typewritten Text
ISSN : 2356-5608
4ème Conférence internationale sur le commerce, l'économie, Marketing & Management Research (BEMM-2016)

implement a robust algorithm with an automatic pattern to

optimize the loading process.

III. LITERATURE REVIEW

 The Single Container Loading Problem with practical

constraints is NP-hard in the strict sense since the classical

SCLP [3] (orthogonal packing, orientation, no overlap) is

reduced to it. Exact algorithms could only solve instances with

moderate size ([4]-[5]). Therefore, it is certain to restore to

heuristics methods in case of practical situations.

Existing algorithms can be roughly divided into three groups

of practical heuristics (not necessarily disjoint). Divide-and-

conquer algorithms, which are recursive methods, try to break

the container into smaller pieces and use to solve each one

recursively before combining them to get a final solution ([6]-

[7]). Constructive methods work by repeatedly loading blocks

into the container until no further boxes can be loaded.

Finally, local search methods start with an existing solution,

and then repeatedly apply neighborhood operators to generate

newer solutions; an example is illustrated in [8]. Till today the

most successful algorithms are the one based on the block-

building approach; which forms solutions by repeatedly

placing boxes within the container until no box can be packed.

A block represents a subset of boxes where the sum of their

volume doesn’t exceed a maximum threshold (generally set to

98%) of the volume of its bounding cuboid.

The first heuristics was proposed since 1980 [9]. It was a

block-building approach that uses vertical layer. In 1995,

Bishoff and Ratcliff [10] create a benchmark data set known

as the weakly-heterogeneous instances. They suggested

selecting high utilization layer and considered the stability.

Moreover, some meta-heuristics have been investigated such

as the genetic algorithm (e.g. [11]-[12]). In 2003, Bortfeldt et

al. [13] developed a parallel Tabu search algorithm; it was a

block-building approach. In 2005, Moura and Olivera [14]

published a greedy randomized adaptive search procedure

based on the work of George and Robinson [9]. Other meta-

heuristics for the SCLP were proposed, such as the Simulating

Annealing by Jin et al. [15] as well as the variable

neighborhood search by Parreño et al. [8].

More recently in 2012, Zhu et al. [16] propose an analytical

framework for the block-building approaches. They prove that

existing algorithms, from this category, only differ in the

decision made for each key. They used a greedy algorithm

with a new fitness function that estimates the unused space

after a block is loaded. The space in the container is

represented same as the work of Parreño et al. [17]. They

build an algorithm called the “Maximal Space” (MS). It uses a

particular type of simple boxes: the columns and the layers.

The blocks are selected based on a parameter δ: the set of

boxes that have the top δ % and have the maximal volume or

the best fit, are selected.

Zhu and Lim [18] used simple blocks for weakly

heterogeneous instances and general blocks for the strongly

heterogeneous ones. An indicator ht determines which kind of

blocks to generate. They confirmed that the selection of free

space is as important as the selection of a block, and their role

is symmetric in the search tree. They compared the Manhattan

distance and the corner distance, the first is superior for

strongly heterogeneous instances.

In 2014, Araya and Riff [19] offered a constructive approach

using a beam search strategy. The proposed algorithm takes

key elements from ([16]-[17]) but replaces the overarching

strategy. It was an adaptation of the branch-and-bound

approach. They handled the full support to guarantee load

stability, the bottom sides of each loaded boxes are either fully

supported by the container or by the top side of another placed

box. Their approach expands the most promising nodes at

each level.

Liu et al. [20] present a novel Hybrid-Tabu search approach to

the container loading problem. Moreover, their algorithm can

solve problems with additional practical constraint such as

weight limit and weight distribution when tested over real

world data.

Wang et al. [21] consider shipping priority in container

loading, where high priority boxes must be loaded before

those with low priority. They propose a multi-round partial

beam search method that explicitly considers shipping priority

when evaluating the potential of partial solutions to solve this

problem. Since existing benchmark data for shipping priority

covers only weakly heterogeneous instances, they extend the

benchmark data to strongly heterogeneous instances.

Lim et al. [22] address the axle weight limit requirements

stipulated in the California Vehicle Code related to trucks. A

GRASP wall-building algorithm, combined with a linear

integer programming models in an overall heuristic approach,

was used.

To the best of our knowledge, rare are the works which

address jointly three constraints: the load-bearing, the weight

limits, and the positioning. Then, in our work, we propose an

approach that integrates all these constraints.

IV. THE PROPOSED PROCEDURE

A. Block generation

In this work, both simple blocks, that contain only boxes

of the same type in one orientation, and General block, that

contain multiple types of boxes in a different orientation, are

addressed. A simple block is a replication of a given box in

one orientation nx, ny and nz time along the X, Y and Z axis

(The container length, width, and height direction). The

details of simple blocks generation are presented in

Algorithm1.

In the orthogonal packing, there are six possible

orientations for a rectangular box. But, this number could be

restricted (for example the package of a refrigerator shall be

upright), this restriction is due to the sheer stress and the

fragility of some faces. Line 2 considers the possible

orientations of one selected box. In a first step, the new block

to be created has only one box along X as well as a length

equal to the box length (line 3). If the container length and the

maximal accepted number of boxes to be placed are not

exceeded (line 4), then the number of boxes of the same type

is equal to nx*ny, the block width is equal to the box width

Admin
Typewritten Text
ISSN : 2356-5608
4ème Conférence internationale sur le commerce, l'économie, Marketing & Management Research (BEMM-2016)

(line 5). If it is allowed and the new block’s width doesn’t

exceed the container width (line 6), the block will have a

height equal to the box’s height and only one bo

The generated block will be added to the list only if n

number of boxes of a given boxes type) was not exceeded

(line 9, 10, and 11). In a subsequent step (line 12,

the number of boxes along X, Y, and Z would be

that is why the block height (blockHeight) is incremented by the

box height. It is the same approach for the block width and the

length.

 Algorithm 1: Generate simple blocks

 Input: Box list

 Output: Block list

1 for all boxes do

2 for all box orientations do

3 nx← 1; blockLength ← boxLength;

4 while (nx ≤ nb and blockLength ≤

do

5 ny ← 1; blockWidth ← boxWidth

6 while (nx* ny ≤ nb and block

containerWidth) do

7 nz ← 1; blockHeight ←

8 while (nx*ny*nz ≤ nb

ContainerHeight) do

9 add the new block with

along X, Y, and, Z to the Block

list;

10 if (|Block list| = max_bl)

11 return Block list;

12 nx ← nx+ 1;

blockHeight ← block

boxHeight;

13 ny ← ny +1; blockWidth

boxWidth;

14 nz ← nz +1; block Length ←

boxLength;

For general blocks, the same technique presented in [2

was used. In a first step, the block list contains only simple

blocks. In a further step, two blocks are combined along the X,

Y and the Z axis to create a larger one. Firstly, each box

creates at the most six blocks that correspond to the six

possible orthogonal orientations of a box. Iteratively, a

combined procedure is invoked to combine them in conta

along the axis. Only blocks that use min_fr% are accepted

(volume of boxes over the volume of the block must be

greater or equal to min_fr% generally equal to 98% of the

volume of the bounding cuboid). Blocks with the same

(line 5). If it is allowed and the new block’s width doesn’t

exceed the container width (line 6), the block will have a

height equal to the box’s height and only one box along Z.

be added to the list only if nb (the

type) was not exceeded

line 12, 13, and 14),

the number of boxes along X, Y, and Z would be incremented,

) is incremented by the

box height. It is the same approach for the block width and the

Algorithm 1: Generate simple blocks

≤ containerLength)

Width;

blockWidth ≤

← boxHeight;

 and block Height ≤

add the new block with nx*ny*nz

along X, Y, and, Z to the Block

= max_bl) then

Block list;

blockHeight +

Width ← blockWidth +

← blockLength +

For general blocks, the same technique presented in [23]

was used. In a first step, the block list contains only simple

are combined along the X,

Y and the Z axis to create a larger one. Firstly, each box

creates at the most six blocks that correspond to the six

possible orthogonal orientations of a box. Iteratively, a

combined procedure is invoked to combine them in contact

that use min_fr% are accepted

(volume of boxes over the volume of the block must be

greater or equal to min_fr% generally equal to 98% of the

volume of the bounding cuboid). Blocks with the same

dimensions containing the same

identical even if their internal configurations are different.

Also, blocks containing more boxes of a certain type than

what it is available are discarded and considered illegal

configurations. Besides, blocks whose dimensions exceed

size of the container are not generated. The process stops

when max_bl blocks are created or there are no more different

cases (for more details the reader

of generating general blocks in [16

B. Free space representation

Generally, the free space in the container is represented as

a set of rectangular parallelepipeds. On one hand, it is clear

that the empty space in an initial stage is the container itself

when no boxes have been loaded. On the other hand, when a

block is loaded, the remaining free space is a polyhedron

shown in figure 1.

Fig. 1 The free space

The maximal space representation, proposed by Lim et al

[24] is used. For each packed block, at most six cuboids are

generated and cover each face of the loaded block. The

resultant free space list contains overlapped parallelepipeds

between each other but interior disjointed with the packed

block. Figure 2 shows an example of only one place block (for

a reason of clarity, the figure is illustrated in separate

diagrams).

Fig. 2 The maximal space representation

The residual space in the container is presented

list R= {r1, r2,…,rn} of overlapped cuboids. When a block bi is

loaded into a corner of the container, three flapped

parallelepipeds are added to the free space stack. Similarly,

each free space that intersects with any packed block is

removed and up to 6 cuboids are adde

couldn’t contain any box is deleted and considered as a non

useful space (waste space). More detail

presented in algorithm 2 and figure 3.

For each plane that corresponds to a face of the block b, if

the plane intersects with r, then it will divide it into two parts,

where one part overlaps with b and the other part pass through

a residual space. Therefore, for any residual space that

The free space

(polyhedron)

Placed block

dimensions containing the same boxes are considered

identical even if their internal configurations are different.

Also, blocks containing more boxes of a certain type than

what it is available are discarded and considered illegal

configurations. Besides, blocks whose dimensions exceed the

size of the container are not generated. The process stops

when max_bl blocks are created or there are no more different

eader is referred to the algorithm

generating general blocks in [16]).

Generally, the free space in the container is represented as

a set of rectangular parallelepipeds. On one hand, it is clear

that the empty space in an initial stage is the container itself

when no boxes have been loaded. On the other hand, when a

loaded, the remaining free space is a polyhedron as

space in the container

The maximal space representation, proposed by Lim et al.

] is used. For each packed block, at most six cuboids are

generated and cover each face of the loaded block. The

resultant free space list contains overlapped parallelepipeds

between each other but interior disjointed with the packed

an example of only one place block (for

a reason of clarity, the figure is illustrated in separate

The maximal space representation

The residual space in the container is presented as a linked

} of overlapped cuboids. When a block bi is

loaded into a corner of the container, three flapped

parallelepipeds are added to the free space stack. Similarly,

each free space that intersects with any packed block is

removed and up to 6 cuboids are added into R. Any space that

couldn’t contain any box is deleted and considered as a non-

useful space (waste space). More details about updating R are

presented in algorithm 2 and figure 3.

For each plane that corresponds to a face of the block b, if

e intersects with r, then it will divide it into two parts,

where one part overlaps with b and the other part pass through

a residual space. Therefore, for any residual space that

The free space

(polyhedron)

Placed block

Admin
Typewritten Text
ISSN : 2356-5608
4ème Conférence internationale sur le commerce, l'économie, Marketing & Management Research (BEMM-2016)

overlaps with a placed block b, its remaining free space could

be represented by up to 6 free spaces.

Fig. 3 Three possible generated free spaces for a block at the first corner

 Algorithm 2: Update space list
 Input: block b, space s, state (volume utilization, free

boxes, space list)

 Output: space list, state
1 if (the volume of b = the volume of s) then
2 remove s from space list;
3 New space list ← Ø;
4 for all space s1 in the space list do
5 if (b intersect s1 = Ø) then
6 add s1 to New space list;
7 Else
8 dissect s1 in each intersection;
9 clear space list;
10 for all space s2 in new space list do
11 add s2 to space list if it is legal;

It is legal to add a free space to the space list stack only if it

could contain at least one box and shouldn’t be totally located

in another free space. Let’s suppose that for a given space the

corner closest to the origin has the coordinate (x

the corner farthest from the origin has the coordinate (x

The algorithm that cuts a residual space to up six other

most is described as Algorithm3 below and Figure

more details:

 Algorithm 3: Dissect

 Input: space s, block b, space list

 Output: space list

1 if (s.x1 ≠ b.x1) then
2 add the space (s.x1,s.y1,s.z1,b.x1,s.y2

3 if (s.x2 ≠ b.x2) then
4 add the space (b.x2,s.y1,s.z1,s.x2,s.y2

5 if (s.y1 ≠ b.y1) then
6 add the space (s.x1,s.y1,s.z1,s.x2,b.y1

7 if (s.y2 ≠ b.y2) then
8 add the space (s.x1,b.y2,s.z1,s.x2,s.y2

9 if (s.z1 ≠ b.z1) then
10 add the space (s.x1,s.y1,s.z1,s.x2,s.y2

11 if (s.z2 ≠ b.z2) then
12 add the space (s.x1,s.y1,b.z2,b.x1,s.y2

overlaps with a placed block b, its remaining free space could

Three possible generated free spaces for a block at the first corner

, state (volume utilization, free

then

It is legal to add a free space to the space list stack only if it

could contain at least one box and shouldn’t be totally located

another free space. Let’s suppose that for a given space the

corner closest to the origin has the coordinate (x1,y1,z1) and

the corner farthest from the origin has the coordinate (x2,y2,z2).

The algorithm that cuts a residual space to up six others at the

and Figure 4 presents

2,s.z2);

2,s.z2);

1,s.z2);

2,s.z2);

2,b.z1);

2,s.z2);

Fig.4: A placed block b overlaps with a residual space

C. Search state and transition

Our approach works by exploring the search space. It is a

tree search starting from a root node where no blocks are

loaded, the free space is the container itself, all the boxes

remain not placed, and the block list holds all the generated

blocks. The transition from state to another occurs when

placing a block in a free space. For each loaded cuboids, the

list of remaining boxes is updated by discarding them. The

blocks containing more boxes than is available are also

deleted since there are fewer left. Af

empty space at one of its corners, the cover representation will

represent the remaining as a list of overlapped cuboids; this

representation is used in many successful algorithms

[18]). Afterward, we update the free space

2 and 3) by removing the cuboids that intersect with the

loaded blocks and generating up to six new ones. When there

are blocks and free spaces in a state, we select a free space

that minimizes the Manhattan distance: for the eight

corresponding corner pairs, we calculate the distance

|y1-y2| + |z1-z2| to the container. The corner with the smallest

value is the anchor corner of s, and the distance between the

anchor corner and its corresponding corner of the container is

the anchor distance. The free space that minimizes the

Manhattan distance is selected to be filled. If all the available

blocks can’t fit any free space, this state represents a terminal

state and the corresponding loading plan is a maximal packing.

D. The Overall Approach (OAA)

We propose a greedy two-step look

selecting a free space deterministically followed by a block

search. More precisely, the cover representation is used to

represent the free space, since it does not restrict the search

space to only guillotine cuts. Then, we construct simple

blocks for weakly heterogeneous problem instances, and

general blocks for strongly heterogeneous problem instances.

We select a free space from the space list stack that

minimizes the Manhattan distance. The purpose behind this

choice is to first pack closer to the corner, then the sides and

then the faces of the container. The space in the container

tends to be continuous and the fragmentation would be

reduced. The selection of a block is based on a two

ahead search approach with an appropriate fitness function. If

a block is selected, it is packed at the anchor corner. Finally,

the search effort is doubled at

procedure. Algorithm 4 summarizes the overall approach.

: A placed block b overlaps with a residual space

Our approach works by exploring the search space. It is a

tree search starting from a root node where no blocks are

loaded, the free space is the container itself, all the boxes

remain not placed, and the block list holds all the generated

sition from state to another occurs when

placing a block in a free space. For each loaded cuboids, the

list of remaining boxes is updated by discarding them. The

blocks containing more boxes than is available are also

deleted since there are fewer left. After placing a block into an

empty space at one of its corners, the cover representation will

represent the remaining as a list of overlapped cuboids; this

representation is used in many successful algorithms ([16]-

. Afterward, we update the free space list (see algorithms

2 and 3) by removing the cuboids that intersect with the

loaded blocks and generating up to six new ones. When there

are blocks and free spaces in a state, we select a free space

that minimizes the Manhattan distance: for the eight

pairs, we calculate the distance |x1-x2| +

| to the container. The corner with the smallest

value is the anchor corner of s, and the distance between the

anchor corner and its corresponding corner of the container is

anchor distance. The free space that minimizes the

Manhattan distance is selected to be filled. If all the available

blocks can’t fit any free space, this state represents a terminal

state and the corresponding loading plan is a maximal packing.

(OAA)

step look-ahead procedure by

selecting a free space deterministically followed by a block

search. More precisely, the cover representation is used to

represent the free space, since it does not restrict the search

pace to only guillotine cuts. Then, we construct simple

blocks for weakly heterogeneous problem instances, and

general blocks for strongly heterogeneous problem instances.

We select a free space from the space list stack that

minimizes the Manhattan distance. The purpose behind this

choice is to first pack closer to the corner, then the sides and

then the faces of the container. The space in the container

ous and the fragmentation would be

reduced. The selection of a block is based on a two-step look-

ahead search approach with an appropriate fitness function. If

a block is selected, it is packed at the anchor corner. Finally,

the search effort is doubled at each iteration of the global

rizes the overall approach.

Admin
Typewritten Text
ISSN : 2356-5608
4ème Conférence internationale sur le commerce, l'économie, Marketing & Management Research (BEMM-2016)

 Algorithm 4: OAA procedure

 Input: Box list, Container

 Output: Best Solution
1 Initialize and get data;
2 Evaluate heterogeneity;
3 if (weakly heterogeneous case)
4 generate simple blocks;
5 else
6 generate general blocks;
7 Best Solution ← Ø;
8 Search effort ← 1;
9 while (the consumed CPU time is not exceeded) do

10 w ← integer part (������ℎ �		
��) ;
11 if (there is a redundancy) then
12 Search effort ← 2*Search effort;
13 continue;
14 the free space list contains the container itself;
15 while (the free space list is not empty) do
16 Compare the free spaces then select the best one;
17 Perform a two-depth tree search by ranking w

blocks according to the fitness function for each

node then conserve the most promising one;
18 if (there is at least one block) then
19 Pack b at the anchor corner;
20 Update block list;
21 Update free space list;
22 else delete the free space since no block can fit it;
23 Search effort ← 2*Search effort;
24 Return the best solution;

E. Approach generalization

In a first stage, the classical single container loading

problem has been investigated and an approximate procedure

was proposed. In a second stage, we have adapted the overall

approach in order to fit the weight distribution, the positioning,

and the stacking constraints to deal with realistic situations. In

fact, during transportation, the weight distribution reduces the

risk of boxes shifting when the cargo is moved. The gravity

center must be as close as possible to the container floor

midpoint. Then, the aim of the positioning constraint is the

restriction of certain locations in the container for some items

such as the package of volatile liquids and explosive products

that should be as close as possible to the top of the container,

thus, they could be accessed and removed quickly, if

necessary. Finally, the stacking constraint, also called the

load-bearing constraint, restricts the placement of boxes on

top of each other and imposes that some items could only

support a limit weight or pressure. Therefore, some box

orientations are restricted depend on the load-bearing strength.

Besides, the placement of cuboids on top of each other relies

on the fragility classification: non-fragile boxes could only be

supported by other non-fragile boxes, but not on the fragile

ones.

V. COMPUTATIONAL RESULTS

In order to evaluate its computational performance, the

proposed procedure is implemented using the 64-bit Java

development kit 1.7.0 from Eclipse. All the computational

experiments were carried out on an i5 dual core 2.2 GHz

Personal Computer with 8.0 GB RAM.

A. The classical single container loading problem

To test the effectiveness of our approach without additional

constraints, we use the standard test instances of Bishoff and

Raticliff [10]. More precisely, there are over than 1600

Benchmark instances divided into 16 test files/sets of 100

instances each, named BR0–BR15 and available in the OR

library [25]. They are commonly used in the literature and are

classified into three categories: BR0: homogenous; BR1–BR7:

weakly heterogonous; and BR8–BR15: Strongly heterogonous.

For each instance among the 1600 instances, we create a

file that contains the position of each packed box related with

some other necessary data (for example: the box type which is

used to select a color for the box when it is 3D drawn…). For

the comparison with other approaches, we collect all the

volume utilization indicators, calculate the average and

compare them with the other existing approaches in a next

step.

The results of the overall procedure proposed in algorithm 4

are summarized in Table I: we present for each test set BRi,

i=0,..,15, the corresponding total type of boxes, the average of

the volume utilization in percentage and the average

computing CPU time in seconds.

TABLE I

PERFORMANCE OF THE PROPOSED OAA

Test Set
Total type of

boxes
Average

volume utilization
Average

CPU Time
BR0 1 90.70 36.50

BR1 3 95.37 50.00

BR2 5 95.74 50.00

BR3 8 95.82 30.00

BR4 10 95.55 30.00

BR5 12 95.38 30.00

BR6 15 95.20 30.00

BR7 20 94.71 30.00

BR8 30 94.07 30.01

BR9 40 93.49 30.59

BR10 50 93.21 30.01

BR11 60 92.79 30.55

BR12 70 92.73 41.11

BR13 80 92.73 52.31

BR14 90 92.60 59.36

BR15 100 92.69 61.31

Average 37.13 93.92 38.86

Based on figure 5 derived from Table I, we can mention

that the OAA generates more efficient solutions for weakly

heterogeneous instances than the strongly heterogeneous

instances since these last ones are the most difficult to solve.

Admin
Typewritten Text
ISSN : 2356-5608
4ème Conférence internationale sur le commerce, l'économie, Marketing & Management Research (BEMM-2016)

Fig. 5: The average volume utilization

The performance comparison between our approach and the

most known heuristics from the literature, in terms of volume

utilization, is summarized in Table II. The column headings

are as follows: GRASP: Greedy Randomized Adaptive Search

Procedure [14], FDA: Fit Degree Algorithm [26], VNS:

Variable Neighborhood Search [8], TRS: Tree Search [23],

G2LA: Greedy 2-Step Lookahead [16], IDGLA: Iterative-

Doubling Greedy–Lookahead [18], BS: Beam Search [19].

TABLE II

COMPARISON OF THE PROPOSED PROCEDURE WITH THE MOST KNOWN

HEURISTICS

Test Set GRASP FDA VNS TRS G2LA IDGLA BS OOA

BR0 - - - 90.0 90.8 90.8 91.0 90.7

BR1 89.1 92.9 94.9 95.1 95.5 95.5 95.7 95.4

BR2 90.4 93.9 95.2 95.4 96.0 96.1 96.2 95.7

BR3 90.9 93.7 95.0 95.5 96.1 96.2 96.5 95.8

BR4 90.4 93.7 94.7 95.2 95.9 96.1 96.3 95.5

BR5 89.6 93.7 94.3 95.0 95.7 95.9 96.2 95.4

BR6 89.7 93.6 94.0 94.8 95.6 95.7 96.6 95.2

BR7 88.1 93.1 93.5 94.2 95.1 95.3 95.8 94.7

BR8 86.1 92.9 92.8 93.7 94.6 94.7 95.3 94.1

BR9 85.1 92.5 92.2 93.4 94.3 94.5 95.1 93.5

BR10 84.2 92.2 91.9 93.1 94.0 94.3 95.0 93.2

BR11 84.0 91.9 91.5 92.8 93.8 94.1 94.8 92.8

BR12 83.6 91.8 91.2 92.7 93.7 94.0 94.6 92.7

BR13 83.5 91.6 91.1 92.5 93.5 93.8 94.6 92.7

BR14 83.3 91.3 90.6 92.4 93.4 93.8 94.5 92.6

BR15 83.2 91.0 90.4 92.4 93.3 93.7 94.4 92.7

Average 86.7 92.7 92.9 93.9 94.7 94.9 95.1 93.9

Average
CPUTime

69 633 296 320 500 303 500 39

It is noteworthy to note that the computing CPU Times

could not be compared directly because in each work a

specific computing machine was used. Obviously, for all

approaches, the running times are lower for the weakly

heterogeneous problems and increase with the number of

different box types. Our approach outperforms all the existing

approaches that were published before 2012 while taking

much less CPU Time computing. As described in section II,

the objective of this work is to develop a resolution procedure

providing good results within very reasonable times.

B. Considering the weight distribution constraints

The closer the gravity center is to the middle of the length

and width, the better the down height is. The evaluating

criterion of weight distribution is defined using the center of

gravity of loaded boxes; while for each box with an even

weight density, the center of gravity of the box coincides with

its geometric center. The nearer the center of gravity is to the

ideal center of gravity for the container, the evener the weight

distribution of boxes is.

To test the effectiveness of our algorithm when fitting the

weight distribution constraints, we use the test data sets named

wtpack1–wtpack7 [27], and we set the maximum CPU time to

50 seconds for all the following computational tests. Table III

summarizes the OAA results showing that an average volume

utilization of more than 90% is provided.

TABLE IIII

PERFORMANCE OF THE OAA WHEN CONSIDERING THE WEIGHT

DISTRIBUTION CONSTRAINTS

Test Set Average volume utilization
wtpack1 90.48

wtpack2 90.56

wtpack3 90.99

wtpack4 90.76

wtpack5 90.83

wtpack6 91.00

wtpack7 90.59

Average 90.74

C. Considering all the additional constraints

In this section, we consider simultaneously the weight

distribution, positioning, Load-bearing constraints. To the best

of our knowledge, there is no work in the literature dealing

with such realistic problem. Thus, we create 21 test instances,

which are the 3 first instances from the wtpack test set. For

each box line type, two additional binary parameters are added.

The first parameter indicated whether the boxes in this line

shall be placed on top or not. It takes1, if we shall place this

kind of boxes on top, 0 otherwise. The second binary

parameter indicates if a box is fragile or not. It is equal to 1 if

the box is fragile, 0 otherwise. We compromise with the

positioning but the load-bearing is restrictive (no non-fragile

box is placed on top of a fragile box). The results are

presented in Table IV. The first column holds the label of the

test pack: we call the new set data SPWpack (S stands for

stacking, P for positioning and W for weight distribution). The

integer after SPWpack determines the number of box types.

The second column indicates the total volume utilization in

percentage.

90,7%

95,4%

95,7%

95,8%

95,5%

95,4%

95,2%

94,7%

94,1%

93,5%

93,2%

92,8%

92,7%

92,7%

92,6%

92,7%

88%

89%

90%

91%

92%

93%

94%

95%

96%

97%

B
R

0

B
R

1

B
R

2

B
R

3

B
R

4

B
R

5

B
R

6

B
R

7

B
R

8

B
R

9

B
R

1
0

B
R

1
1

B
R

1
2

B
R

1
3

B
R

1
4

B
R

1
5

Admin
Typewritten Text
ISSN : 2356-5608
4ème Conférence internationale sur le commerce, l'économie, Marketing & Management Research (BEMM-2016)

TABLE IV

PERFORMANCE OF THE OAA WHEN CONSIDERING ALL THE ADDITIONAL

CONSTRAINTS

Test Set Average volume utilization
SPWpack3 90.81

SPWpack5 89.22

SPWpack8 90.11

SPWpack10 89.81

SPWpack12 90.26

SPWpack15 90.70

SPWpack20 89.60

Average 90.07

From Table IV, we can conclude that even if we take into

consideration all the additional realistic constraints, the

tailored procedure still provides, in average, solutions with up

to 90% of volume utilization in at most 50 seconds.

VI. CONCLUSION

We investigate the Single Container Loading Problem, the

problem of loading rectangular boxes into containers, which is

a common basic activity in material handling. In this work, we

propose a new heuristic for the single container loading

problem. The aim is to pack three-dimensional small items

called boxes in a three-dimensional big item called container

efficiently so as the volume utilization is maximized. The free

space selection and the block placement are performed

deterministically, while a greedy-two-step lookahead

algorithm ranks a block for a select empty space. The overall

approach was developed using the Java language and

extensively tested on over than 1600 Benchmark instances

from the literature. The computational experimentation proves

that the proposed procedure is competitive, as good solutions

are found in very reasonable times. To go further in taking

into consideration more realistic constraints, we adapted our

algorithm to fit the weight distribution, the positioning, and

the stacking constraints. The final framework would be used

to complete the 3D graphic in order to implement it in the

EWM related module of SAP.

ACKNOWLEDGMENT

 The authors would express their gratitude to the personal of

“Carthago Solutions Company” and more precisely Achref

ZAIDI for his kind and valuable input towards this work.

REFERENCES

[1] (2015) The 2014 market review. ALPHALINER. [Online]. Available:

http://www.alphaliner.com/liner2/research_files/newsletters/2015/no03

/Alphaliner%20Newsletter%20no%2003%20-%202015.pdf

[2] (2016) SAP, n.d. Supply Chain Management/ SAP Extended

Warehouse Management. [Online] Available:

http://go.sap.com/product/scm/extended-warehouse-management.html

[3] D. Pisinger, “Heuristics for the container loading problem”, European

Journal of Operational Research, vol. 141, pp. 382-92, Sep. 2002.

[4] S. P. Fekete, J. Schepers, and J. C. van der Veen, “An exact algorithm

for higher-dimensional orthogonal packing”, Operations Research, vol.

55, pp.569–587, Jun. 2007.

[5] L. Junqueira, R. Morabito , and D. S. Yamashita, “Three-dimensional

container loading models with cargo stability and load bearing

constraints”, Computers & Operations Research, vol. 39, pp. 74–85,

Jan. 2012.

[6] C. F. Chien, and W. T. Wu, “A recursive computational procedure for

container loading”, Computers & industrial engineering, vol. 35, pp.

319-322, Oct. 1998.

[7] L. Lins, S. Lins, and R. Morabito, “An n-tet graph approach for non-

guillotine packings of n-dimensional boxes into an n-container”,

European Journal of Operational Research, vol. 141, pp. 421-439, Sep.

2002.

[8] F. Parreño, R. Alvarez-Valdés, J. F. Oliveira, and J. M. Tamarit,

“Neighborhood structures for the container loading problem: a VNS

implementation”, Journal of Heuristics, vol. 16, pp. 1-22, Feb. 2010.

[9] J. A. George, and D. F. Robinson, “A heuristic for packing boxes into a

container”, Computers & Operations Research, vol. 7, pp. 147-156,

Dec. 1980.

[10] E. E. Bischoff, and M. S. W. Ratcliff, “Issues in the development of

approaches to container loading”, Omega, vol. 23, pp. 377-390, Aug.

1995.

[11] H. Gehring, and A. Bortfeldt, “A genetic algorithm for solving the

container loading problem”, International Transactions in Operational

Research, vol. 4, pp. 401-418, Nov. 1997.

[12] A. Bortfeldt, and H. Gehring, “A hybrid genetic algorithm for the

container loading problem”, European Journal of Operational

Research, vol. 131, pp. 143-161, May. 2001.

[13] A. Bortfeldt, H. Gehring, and D. Mack, “A parallel tabu search

algorithm for solving the container loading problem”, Parallel

Computing, vol. 29, pp. 641-662, May. 2003.

[14] A. Moura, and J. F Oliveira, “A GRASP approach to the container-

loading problem,” IEEE Intelligent Systems, vol. 20, pp.50–57, Jul.

2005.

[15] Z. Jin, K. Ohno, and J. Du, “An efficient approach for the three-

dimensional container packing problem with practical constraints”,

Asia-Pacific Journal of Operational Research, vol. 21, pp. 279-295,

Sep. 2004.

[16] W. Zhu, W. C. Oon, A. Lim, and Y. Weng, “The six elements to block-

building approaches for the single container loading problem,” Applied

Intelligence, vol. 37, pp. 431–445, Oct. 2012.

[17] F. Parreño, R. Alvarez-Valdés, J. M. Tamarit, and J. F. Oliveira, “A

maximal-space algorithm for the container loading problem,”

INFORMS Journal on Computing, vol. 20, pp. 412–422, Aug. 2008.

[18] W. Zhu, and A. Lim, “A new iterative-doubling Greedy–Lookahead

algorithm for the single container loading problem”, European Journal

of Operational Research, vol. 222, pp. 408-417, Nov. 2012.

[19] I. Araya, and M. C. Riff, “A beam search approach to the container

loading problem”, Computers & Operations Research, vol. 43, pp.

100-107, Mar. 2014.

[20] J. Liu, Y. Yue, Z. Dong, C. Maple, and M. Keech, “A novel hybrid

tabu search approach to container loading”, Computers & Operations

Research, vol. 38, pp. 797-807, Apr. 2011.

[21] N. Wang, A. Lim, and W. Zhu, “A multi-round partial beam search

approach for the single container loading problem with shipment

priority”, International Journal of Production Economics, vol. 145, pp.

531-540, Oct. 2013.

[22] A. Lim, H. Ma, C. Qiu, and W. Zhu, “The single container loading

problem with axle weight constraints”, International Journal of

Production Economics, vol. 144, pp. 358-369, Jul. 2013.

[23] T. Fanslau, and A. Bortfeldt, “A tree search algorithm for solving the

container loading problem,” INFORMS Journal on Computing, vol. 22,

pp. 222–235, May. 2010.

[24] A. Lim, B. Rodrigues, and Y. Wang, “A multi-faced buildup algorithm

for three-dimensional packing problems”, Omega, vol. 31, pp. 471-481,

Dec. 2003.

[25] (1990) The OR Library. [Online]. Available:

 http://people.brunel.ac.uk/~mastjjb/jeb/info.html

[26] K. He, and W. Huang, “An efficient placement heuristic for three-

dimensional rectangular packing,” Computers & Operations

Research, vol. 38, pp. 227–233, Jan. 2011.

[27] (1998) The OR Library: Container Loading with weight restrictions.

[Online]. Available:

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/conloadinfo.htm

Admin
Typewritten Text
ISSN : 2356-5608
4ème Conférence internationale sur le commerce, l'économie, Marketing & Management Research (BEMM-2016)

