
 

New Heuristic for the Single Container Loading 

Problem 
Safa Bhar Layeb

1
, Omar Jabloun

2
, Amel Jaoua

3
 

University of Tunis El Manar, National Engineering School of Tunis  

UR-OASIS: Optimization & Analysis of Service and Industrial Systems  

BP 37 Le Belvédère, 1002, Tunis, Tunisia 
1
Safa.Layeb@enit.utm.tn 

2
omar.JABLOUN.2@gmail.com 
3
amel.jaoua@polymtl.ca 

 

 

Abstract— Solving the Single Container Loading Problem 

(SCLP) remains a relevant issue in the transportation and 

logistics industry. It is faced by the majority of distribution 

centers and warehouses. The SCLP seeks to pack three-

dimensional boxes into a three-dimensional container in order to 

maximize the total volume utilization.  
For this challenging problem, we propose a new greedy two-step 

look-ahead procedure by selecting a free space deterministically 

followed by a block search. We also generalized the proposed 

heuristic to the single container loading problem with additional 

constraints to deal with realistic situations.  

In order to evaluate its computational performance, the 

proposed procedure is implemented and tests are carried out on 

over than 1600 benchmark instances. Our approach performs 

very well comparing to the most known heuristics from the 

literature. 

 

Keywords— Transportation, Packing, Container loading, 

Heuristic, Block-building. 

I. INTRODUCTION 

 

Loading rectangular boxes into containers (pallet, Truck, 

railway …) is a common basic activity in material handling. 

The usage of containers to pack products has grown hugely in 

recent years. According to the 2014 annual market review of 

“Alpha liner” [1], the container ship capacity has grown by a 

rate equal to 6.3%. Thus, a problem faced by the majority of 

distribution centers and warehouses is how to load efficiently 

different items in a single container. Actually, the random and 

manual packing patterns produce nonstable loading plans 

leading most of the cases to damages and returns. To address 

this issue, many recent studies in transportation deal with the 

Single Container Loading Problem (SCLP).  
 The SCLP is modeled as an orthogonal packing of 

rectangular items. The large rectangular parallelepiped is 

called container and the smaller ones are called boxes or 

cuboids. It seeks to pack three-dimensional boxes into a three-

dimensional container in order to maximize the total volume 

utilization. Not surprisingly, this challenging problem is 

known to be an NP-hard problem in the strict sense.  

The scope of this work is to propose for this challenging 

problem a new competitive heuristic method that provides 

very good solutions in very reasonable computing times. In 

order to reflect realistic situations, we generalized the 

proposed framework to fit the weight distribution, stacking, 

and positioning constraints. 

 

The remainder of this paper is organized as follows. In 

section 2, we present the project context of this work. In 

section 3, a literature review is proposed for the SCLP. Then, 

in section 4, we describe the proposed heuristic procedure. In 

section 5, we report the results of extensive computational 

experiments carried out on well-known instances from the 

literature. 

II. PROJECT CONTEXT 

 

Systems, Applications and Products in Data Processing 

(SAP) [2], is the leader in enterprise resource planning (ERP) 

in terms of software and software-related services. Although, 

The SAP and its related products, the Extended Warehouse 

Management (EWM) [2], optimize during the different stages 

of the supply chain management (automatic replenishment, 

yard management…). When it comes to packing in the 

outbound delivery, there is no algorithm implemented to load 

efficiently different items in a single container. Unfortunately, 

random and manual packing patterns produce non stable 

loading plans leading most of the cases to damages and 

returns. 

In this context, this study is part of a development project 

aiming to provide a planning procedure when loading single 

container with mixed products (items with different sizes and 

dimensions) in the EWM service module of SAP. We are 

dealing with a problem faced by the majority of distribution 

centers and warehouses. The objective is to propose and 
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implement a robust algorithm with an automatic pattern to 

optimize the loading process. 

III. LITERATURE REVIEW 

    The Single Container Loading Problem with practical 

constraints is NP-hard in the strict sense since the classical 

SCLP [3] (orthogonal packing, orientation, no overlap) is 

reduced to it. Exact algorithms could only solve instances with 

moderate size ([4]-[5]). Therefore, it is certain to restore to 

heuristics methods in case of practical situations.  

Existing algorithms can be roughly divided into three groups 

of practical heuristics (not necessarily disjoint). Divide-and-

conquer algorithms, which are recursive methods, try to break 

the container into smaller pieces and use to solve each one 

recursively before combining them to get a final solution ([6]-

[7]). Constructive methods work by repeatedly loading blocks 

into the container until no further boxes can be loaded. 

Finally, local search methods start with an existing solution, 

and then repeatedly apply neighborhood operators to generate 

newer solutions; an example is illustrated in [8]. Till today the 

most successful algorithms are the one based on the block-

building approach; which forms solutions by repeatedly 

placing boxes within the container until no box can be packed. 

A block represents a subset of boxes where the sum of their 

volume doesn’t exceed a maximum threshold (generally set to 

98%) of the volume of its bounding cuboid.  

The first heuristics was proposed since 1980 [9]. It was a 

block-building approach that uses vertical layer. In 1995, 

Bishoff and Ratcliff [10] create a benchmark data set known 

as the weakly-heterogeneous instances. They suggested 

selecting high utilization layer and considered the stability. 

Moreover, some meta-heuristics have been investigated such 

as the genetic algorithm (e.g. [11]-[12]). In 2003, Bortfeldt et 

al. [13] developed a parallel Tabu search algorithm; it was a 

block-building approach. In 2005, Moura and Olivera [14] 

published a greedy randomized adaptive search procedure 

based on the work of George and Robinson [9]. Other meta-

heuristics for the SCLP were proposed, such as the Simulating 

Annealing by Jin et al. [15] as well as the variable 

neighborhood search by Parreño et al. [8]. 

More recently in 2012, Zhu et al. [16] propose an analytical 

framework for the block-building approaches. They prove that 

existing algorithms, from this category, only differ in the 

decision made for each key. They used a greedy algorithm 

with a new fitness function that estimates the unused space 

after a block is loaded. The space in the container is 

represented same as the work of Parreño et al. [17]. They 

build an algorithm called the “Maximal Space” (MS). It uses a 

particular type of simple boxes: the columns and the layers. 

The blocks are selected based on a parameter δ: the set of 

boxes that have the top δ % and have the maximal volume or 

the best fit, are selected. 

Zhu and Lim [18] used simple blocks for weakly 

heterogeneous instances and general blocks for the strongly 

heterogeneous ones. An indicator ht determines which kind of 

blocks to generate. They confirmed that the selection of free 

space is as important as the selection of a block, and their role 

is symmetric in the search tree. They compared the Manhattan 

distance and the corner distance, the first is superior for 

strongly heterogeneous instances.  

In 2014, Araya and Riff [19] offered a constructive approach 

using a beam search strategy. The proposed algorithm takes 

key elements from ([16]-[17]) but replaces the overarching 

strategy. It was an adaptation of the branch-and-bound 

approach. They handled the full support to guarantee load 

stability, the bottom sides of each loaded boxes are either fully 

supported by the container or by the top side of another placed 

box. Their approach expands the most promising nodes at 

each level.  

Liu et al. [20] present a novel Hybrid-Tabu search approach to 

the container loading problem. Moreover, their algorithm can 

solve problems with additional practical constraint such as 

weight limit and weight distribution when tested over real 

world data.  

Wang et al. [21] consider shipping priority in container 

loading, where high priority boxes must be loaded before 

those with low priority. They propose a multi-round partial 

beam search method that explicitly considers shipping priority 

when evaluating the potential of partial solutions to solve this 

problem. Since existing benchmark data for shipping priority 

covers only weakly heterogeneous instances, they extend the 

benchmark data to strongly heterogeneous instances.  

Lim et al. [22] address the axle weight limit requirements 

stipulated in the California Vehicle Code related to trucks. A 

GRASP wall-building algorithm, combined with a linear 

integer programming models in an overall heuristic approach, 

was used.  

To the best of our knowledge, rare are the works which 

address jointly three constraints: the load-bearing, the weight 

limits, and the positioning. Then, in our work, we propose an 

approach that integrates all these constraints. 

IV. THE PROPOSED PROCEDURE 

A. Block generation 

In this work, both simple blocks, that contain only boxes 

of the same type in one orientation, and General block, that 

contain multiple types of boxes in a different orientation, are 

addressed. A simple block is a replication of a given box in 

one orientation nx, ny and nz time along the X, Y and Z axis 

(The container length, width, and height direction). The 

details of simple blocks generation are presented in 

Algorithm1. 

In the orthogonal packing, there are six possible 

orientations for a rectangular box. But, this number could be 

restricted (for example the package of a refrigerator shall be 

upright), this restriction is due to the sheer stress and the 

fragility of some faces. Line 2 considers the possible 

orientations of one selected box. In a first step, the new block 

to be created has only one box along X as well as a length 

equal to the box length (line 3). If the container length and the 

maximal accepted number of boxes to be placed are not 

exceeded (line 4), then the number of boxes of the same type 

is equal to nx*ny, the block width is equal to the box width 
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(line 5). If it is allowed and the new block’s width doesn’t 

exceed the container width (line 6), the block will have a 

height equal to the box’s height and only one bo

The generated block will be added to the list only if n

number of boxes of a given boxes type) was not exceeded 

(line 9, 10, and 11). In a subsequent step (line 12,

the number of boxes along X, Y, and Z would be

that is why the block height (blockHeight) is incremented by the 

box height. It is the same approach for the block width and the 

length. 

 

 Algorithm 1: Generate simple blocks

 Input: Box list 

 Output: Block list 

1 for all boxes do 

2 for all box orientations do 

3 nx← 1; blockLength ← boxLength; 

4 while (nx ≤ nb and blockLength ≤ 

do 

5 ny ← 1; blockWidth ← boxWidth

6 while (nx* ny ≤ nb and block

containerWidth) do 

7 nz ← 1; blockHeight ←

8 while (nx*ny*nz ≤ nb 

ContainerHeight) do 

9 add the new block with 

along X, Y, and, Z to the Block 

list; 

10 if (|Block list| = max_bl) 

11 return Block list;

12 nx ← nx+ 1;  

blockHeight ← block

boxHeight; 

13 ny ← ny +1; blockWidth

boxWidth; 

14 nz ← nz +1; block Length ←

boxLength; 

 

For general blocks, the same technique presented in [2

was used. In a first step, the block list contains only simple 

blocks. In a further step, two blocks are combined along the X, 

Y and the Z axis to create a larger one. Firstly, each box 

creates at the most six blocks that correspond to the six 

possible orthogonal orientations of a box. Iteratively, a 

combined procedure is invoked to combine them in conta

along the axis. Only blocks that use min_fr% are accepted 

(volume of boxes over the volume of the block must be 

greater or equal to min_fr% generally equal to 98% of the 

volume of the bounding cuboid). Blocks with the same 

 

(line 5). If it is allowed and the new block’s width doesn’t 

exceed the container width (line 6), the block will have a 

height equal to the box’s height and only one box along Z. 

be added to the list only if nb (the 

type) was not exceeded 

line 12, 13, and 14), 

the number of boxes along X, Y, and Z would be incremented, 

) is incremented by the 

box height. It is the same approach for the block width and the 

Algorithm 1: Generate simple blocks 

 

≤ containerLength) 

Width; 

blockWidth ≤ 

← boxHeight; 

 and block Height ≤ 

add the new block with nx*ny*nz 

along X, Y, and, Z to the Block 

= max_bl) then 

Block list; 

blockHeight + 

Width ← blockWidth + 

← blockLength + 

For general blocks, the same technique presented in [23] 

was used. In a first step, the block list contains only simple 

are combined along the X, 

Y and the Z axis to create a larger one. Firstly, each box 

creates at the most six blocks that correspond to the six 

possible orthogonal orientations of a box. Iteratively, a 

combined procedure is invoked to combine them in contact 

that use min_fr% are accepted 

(volume of boxes over the volume of the block must be 

greater or equal to min_fr% generally equal to 98% of the 

volume of the bounding cuboid). Blocks with the same 

dimensions containing the same

identical even if their internal configurations are different. 

Also, blocks containing more boxes of a certain type than 

what it is available are discarded and considered illegal 

configurations. Besides, blocks whose dimensions exceed

size of the container are not generated. The process stops 

when max_bl blocks are created or there are no more different 

cases (for more details the reader

of generating general blocks in [16

B. Free space representation  

Generally, the free space in the container is represented as 

a set of rectangular parallelepipeds. On one hand, it is clear 

that the empty space in an initial stage is the container itself 

when no boxes have been loaded. On the other hand, when a 

block is loaded, the remaining free space is a polyhedron 

shown in figure 1. 

Fig. 1 The free space 

 

The maximal space representation, proposed by Lim et al

[24] is used. For each packed block, at most six cuboids are 

generated and cover each face of the loaded block. The 

resultant free space list contains overlapped parallelepipeds 

between each other but interior disjointed with the packed 

block. Figure 2 shows an example of only one place block (for 

a reason of clarity, the figure is illustrated in separate 

diagrams).  

 

Fig. 2 The maximal space representation

The residual space in the container is presented 

list R= {r1, r2,…,rn} of overlapped cuboids. When a block bi is 

loaded into a corner of the container, three flapped 

parallelepipeds are added to the free space stack. Similarly, 

each free space that intersects with any packed block is 

removed and up to 6 cuboids are adde

couldn’t contain any box is deleted and considered as a non

useful space (waste space). More detail

presented in algorithm 2 and figure 3.

 

For each plane that corresponds to a face of the block b, if 

the plane intersects with r, then it will divide it into two parts, 

where one part overlaps with b and the other part pass through 

a residual space. Therefore, for any residual space that 

The free space 

(polyhedron)

Placed block

dimensions containing the same boxes are considered 

identical even if their internal configurations are different. 

Also, blocks containing more boxes of a certain type than 

what it is available are discarded and considered illegal 

configurations. Besides, blocks whose dimensions exceed the 

size of the container are not generated. The process stops 

when max_bl blocks are created or there are no more different 

eader is referred to the algorithm 

generating general blocks in [16]). 

 

Generally, the free space in the container is represented as 

a set of rectangular parallelepipeds. On one hand, it is clear 

that the empty space in an initial stage is the container itself 

when no boxes have been loaded. On the other hand, when a 

loaded, the remaining free space is a polyhedron as 

 

space in the container 

The maximal space representation, proposed by Lim et al. 

] is used. For each packed block, at most six cuboids are 

generated and cover each face of the loaded block. The 

resultant free space list contains overlapped parallelepipeds 

between each other but interior disjointed with the packed 

an example of only one place block (for 

a reason of clarity, the figure is illustrated in separate 

 
The maximal space representation 

The residual space in the container is presented as a linked 

} of overlapped cuboids. When a block bi is 

loaded into a corner of the container, three flapped 

parallelepipeds are added to the free space stack. Similarly, 

each free space that intersects with any packed block is 

removed and up to 6 cuboids are added into R. Any space that 

couldn’t contain any box is deleted and considered as a non-

useful space (waste space). More details about updating R are 

presented in algorithm 2 and figure 3. 

For each plane that corresponds to a face of the block b, if 

e intersects with r, then it will divide it into two parts, 

where one part overlaps with b and the other part pass through 

a residual space. Therefore, for any residual space that 

The free space  

(polyhedron) 

Placed block 

Admin
Typewritten Text
ISSN : 2356-5608
4ème Conférence internationale sur le commerce, l'économie, Marketing & Management Research (BEMM-2016)




overlaps with a placed block b, its remaining free space could 

be represented by up to 6 free spaces. 

 

Fig. 3 Three possible generated free spaces for a block at the first corner

 Algorithm 2: Update space list 
 Input: block b, space s, state (volume utilization, free 

boxes, space list) 

 Output: space list, state 
1 if (the volume of b = the volume of s) then
2 remove s from space list; 
3 New space list ← Ø; 
4 for all space s1 in the space list do 
5 if (b intersect s1 = Ø) then 
6 add s1 to New space list; 
7 Else 
8 dissect s1 in each intersection; 
9 clear space list; 
10 for all space s2 in new space list do 
11 add s2 to space list if it is legal; 

 

 

It is legal to add a free space to the space list stack only if it 

could contain at least one box and shouldn’t be totally located 

in another free space. Let’s suppose that for a given space the 

corner closest to the origin has the coordinate (x

the corner farthest from the origin has the coordinate (x

The algorithm that cuts a residual space to up six other

most is described as Algorithm3 below and Figure

more details: 

 

 Algorithm 3: Dissect 

 Input: space s, block b, space list 

 Output: space list 

1 if (s.x1 ≠ b.x1) then 
2 add the space (s.x1,s.y1,s.z1,b.x1,s.y2

3 if (s.x2 ≠ b.x2) then 
4 add the space (b.x2,s.y1,s.z1,s.x2,s.y2

5 if (s.y1 ≠ b.y1) then 
6 add the space (s.x1,s.y1,s.z1,s.x2,b.y1

7 if (s.y2 ≠ b.y2) then 
8 add the space (s.x1,b.y2,s.z1,s.x2,s.y2

9 if (s.z1 ≠ b.z1) then 
10 add the space (s.x1,s.y1,s.z1,s.x2,s.y2

11 if (s.z2 ≠ b.z2) then 
12 add the space (s.x1,s.y1,b.z2,b.x1,s.y2

 

 

overlaps with a placed block b, its remaining free space could 

 
Three possible generated free spaces for a block at the first corner 

, state (volume utilization, free 

then 

It is legal to add a free space to the space list stack only if it 

could contain at least one box and shouldn’t be totally located 

another free space. Let’s suppose that for a given space the 

corner closest to the origin has the coordinate (x1,y1,z1) and 

the corner farthest from the origin has the coordinate (x2,y2,z2). 

The algorithm that cuts a residual space to up six others at the 

and Figure 4 presents 

2,s.z2); 

2,s.z2); 

1,s.z2); 

2,s.z2); 

2,b.z1); 

2,s.z2); 

 

Fig.4: A placed block b overlaps with a residual space

C. Search state and transition  

Our approach works by exploring the search space. It is a 

tree search starting from a root node where no blocks are 

loaded, the free space is the container itself, all the boxes 

remain not placed, and the block list holds all the generated 

blocks. The transition from state to another occurs when 

placing a block in a free space. For each loaded cuboids, the 

list of remaining boxes is updated by discarding them. The 

blocks containing more boxes than is available are also 

deleted since there are fewer left. Af

empty space at one of its corners, the cover representation will 

represent the remaining as a list of overlapped cuboids; this 

representation is used in many successful algorithms 

[18]). Afterward, we update the free space

2 and 3) by removing the cuboids that intersect with the 

loaded blocks and generating up to six new ones. When there 

are blocks and free spaces in a state, we select a free space 

that minimizes the Manhattan distance: for the eight 

corresponding corner pairs, we calculate the distance

|y1-y2| + |z1-z2| to the container. The corner with the smallest 

value is the anchor corner of s, and the distance between the 

anchor corner and its corresponding corner of the container is 

the anchor distance. The free space that minimizes the 

Manhattan distance is selected to be filled. If all the available 

blocks can’t fit any free space, this state represents a terminal 

state and the corresponding loading plan is a maximal packing.

D. The Overall Approach (OAA)

We propose a greedy two-step look

selecting a free space deterministically followed by a block 

search. More precisely, the cover representation is used to 

represent the free space, since it does not restrict the search 

space to only guillotine cuts. Then, we construct simple 

blocks for weakly heterogeneous problem instances, and 

general blocks for strongly heterogeneous problem instances. 

We select a free space from the space list stack that 

minimizes the Manhattan distance. The purpose behind this 

choice is to first pack closer to the corner, then the sides and 

then the faces of the container. The space in the container 

tends to be continuous and the fragmentation would be 

reduced. The selection of a block is based on a two

ahead search approach with an appropriate fitness function. If 

a block is selected, it is packed at the anchor corner. Finally, 

the search effort is doubled at

procedure. Algorithm 4 summarizes the overall approach.

 

 

 
: A placed block b overlaps with a residual space 

 

Our approach works by exploring the search space. It is a 

tree search starting from a root node where no blocks are 

loaded, the free space is the container itself, all the boxes 

remain not placed, and the block list holds all the generated 

sition from state to another occurs when 

placing a block in a free space. For each loaded cuboids, the 

list of remaining boxes is updated by discarding them. The 

blocks containing more boxes than is available are also 

deleted since there are fewer left. After placing a block into an 

empty space at one of its corners, the cover representation will 

represent the remaining as a list of overlapped cuboids; this 

representation is used in many successful algorithms ([16]-

. Afterward, we update the free space list (see algorithms 

2 and 3) by removing the cuboids that intersect with the 

loaded blocks and generating up to six new ones. When there 

are blocks and free spaces in a state, we select a free space 

that minimizes the Manhattan distance: for the eight 

pairs, we calculate the distance |x1-x2| + 

| to the container. The corner with the smallest 

value is the anchor corner of s, and the distance between the 

anchor corner and its corresponding corner of the container is 

anchor distance. The free space that minimizes the 

Manhattan distance is selected to be filled. If all the available 

blocks can’t fit any free space, this state represents a terminal 

state and the corresponding loading plan is a maximal packing. 

(OAA) 

step look-ahead procedure by 

selecting a free space deterministically followed by a block 

search. More precisely, the cover representation is used to 

represent the free space, since it does not restrict the search 

pace to only guillotine cuts. Then, we construct simple 

blocks for weakly heterogeneous problem instances, and 

general blocks for strongly heterogeneous problem instances.  

We select a free space from the space list stack that 

minimizes the Manhattan distance. The purpose behind this 

choice is to first pack closer to the corner, then the sides and 

then the faces of the container. The space in the container 

ous and the fragmentation would be 

reduced. The selection of a block is based on a two-step look-

ahead search approach with an appropriate fitness function. If 

a block is selected, it is packed at the anchor corner. Finally, 

the search effort is doubled at each iteration of the global 

rizes the overall approach. 
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 Algorithm 4: OAA procedure 

 Input: Box list, Container 

 Output: Best Solution 
1 Initialize and get data; 
2 Evaluate heterogeneity; 
3 if (weakly heterogeneous case) 
4 generate simple blocks; 
5 else 
6 generate general blocks; 
7 Best Solution ← Ø; 
8 Search effort ← 1; 
9 while (the consumed CPU time is not exceeded) do 

10 w ← integer part (������ℎ �		
��) ; 
11 if (there is a redundancy) then 
12 Search effort ← 2*Search effort; 
13 continue; 
14 the free space list contains the container itself; 
15 while (the free space list is not empty) do 
16 Compare the free spaces then select the best one; 
17 Perform a two-depth tree search by ranking w 

blocks according to the fitness function for each 

node then conserve the most promising one; 
18 if (there is at least one block) then 
19 Pack b at the anchor corner; 
20 Update block list; 
21 Update free space list; 
22 else delete the free space since no block can fit it; 
23 Search effort ← 2*Search effort; 
24 Return the best solution; 

E. Approach generalization  

 

In a first stage, the classical single container loading 

problem has been investigated and an approximate procedure 

was proposed. In a second stage, we have adapted the overall 

approach in order to fit the weight distribution, the positioning, 

and the stacking constraints to deal with realistic situations. In 

fact, during transportation, the weight distribution reduces the 

risk of boxes shifting when the cargo is moved. The gravity 

center must be as close as possible to the container floor 

midpoint. Then, the aim of the positioning constraint is the 

restriction of certain locations in the container for some items 

such as the package of volatile liquids and explosive products 

that should be as close as possible to the top of the container, 

thus, they could be accessed and removed quickly, if 

necessary. Finally, the stacking constraint, also called the 

load-bearing constraint, restricts the placement of boxes on 

top of each other and imposes that some items could only 

support a limit weight or pressure. Therefore, some box 

orientations are restricted depend on the load-bearing strength. 

Besides, the placement of cuboids on top of each other relies 

on the fragility classification: non-fragile boxes could only be 

supported by other non-fragile boxes, but not on the fragile 

ones. 

 

 

V. COMPUTATIONAL RESULTS 

In order to evaluate its computational performance, the 

proposed procedure is implemented using the 64-bit Java 

development kit 1.7.0 from Eclipse. All the computational 

experiments were carried out on an i5 dual core 2.2 GHz 

Personal Computer with 8.0 GB RAM. 

A. The classical single container loading problem 

To test the effectiveness of our approach without additional 

constraints, we use the standard test instances of Bishoff and 

Raticliff [10]. More precisely, there are over than 1600 

Benchmark instances divided into 16 test files/sets of 100 

instances each, named BR0–BR15 and available in the OR 

library [25]. They are commonly used in the literature and are 

classified into three categories: BR0: homogenous; BR1–BR7: 

weakly heterogonous; and BR8–BR15: Strongly heterogonous.  

For each instance among the 1600 instances, we create a 

file that contains the position of each packed box related with 

some other necessary data (for example: the box type which is 

used to select a color for the box when it is 3D drawn…). For 

the comparison with other approaches, we collect all the 

volume utilization indicators, calculate the average and 

compare them with the other existing approaches in a next 

step. 

 

The results of the overall procedure proposed in algorithm 4 

are summarized in Table I: we present for each test set BRi, 

i=0,..,15, the corresponding total type of boxes, the average of 

the volume utilization in percentage and the average 

computing CPU time in seconds.  

TABLE I 

PERFORMANCE OF THE PROPOSED OAA 

Test Set 
Total type of 

boxes 
Average  

volume utilization 
Average  

CPU Time 
BR0 1 90.70 36.50 

BR1 3 95.37 50.00 

BR2 5 95.74 50.00 

BR3 8 95.82 30.00 

BR4 10 95.55 30.00 

BR5 12 95.38 30.00 

BR6 15 95.20 30.00 

BR7 20 94.71 30.00 

BR8 30 94.07 30.01 

BR9 40 93.49 30.59 

BR10 50 93.21 30.01 

BR11 60 92.79 30.55 

BR12 70 92.73 41.11 

BR13 80 92.73 52.31 

BR14 90 92.60 59.36 

BR15 100 92.69 61.31 

Average 37.13 93.92 38.86 

 

Based on figure 5 derived from Table I, we can mention 

that the OAA generates more efficient solutions for weakly 

heterogeneous instances than the strongly heterogeneous 

instances since these last ones are the most difficult to solve. 
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Fig. 5: The average volume utilization  

The performance comparison between our approach and the 

most known heuristics from the literature, in terms of volume 

utilization, is summarized in Table II. The column headings 

are as follows: GRASP: Greedy Randomized Adaptive Search 

Procedure [14], FDA: Fit Degree Algorithm [26], VNS: 

Variable Neighborhood Search [8], TRS: Tree Search [23], 

G2LA: Greedy 2-Step Lookahead [16], IDGLA: Iterative-

Doubling Greedy–Lookahead [18], BS: Beam Search [19]. 

 

TABLE II 

COMPARISON OF THE PROPOSED PROCEDURE WITH THE MOST KNOWN 

HEURISTICS 

Test Set GRASP FDA VNS TRS G2LA IDGLA BS OOA 

BR0 - - - 90.0 90.8 90.8 91.0 90.7 

BR1 89.1 92.9 94.9 95.1 95.5 95.5 95.7 95.4 

BR2 90.4 93.9 95.2 95.4 96.0 96.1 96.2 95.7 

BR3 90.9 93.7 95.0 95.5 96.1 96.2 96.5 95.8 

BR4 90.4 93.7 94.7 95.2 95.9 96.1 96.3 95.5 

BR5 89.6 93.7 94.3 95.0 95.7 95.9 96.2 95.4 

BR6 89.7 93.6 94.0 94.8 95.6 95.7 96.6 95.2 

BR7 88.1 93.1 93.5 94.2 95.1 95.3 95.8 94.7 

BR8 86.1 92.9 92.8 93.7 94.6 94.7 95.3 94.1 

BR9 85.1 92.5 92.2 93.4 94.3 94.5 95.1 93.5 

BR10 84.2 92.2 91.9 93.1 94.0 94.3 95.0 93.2 

BR11 84.0 91.9 91.5 92.8 93.8 94.1 94.8 92.8 

BR12 83.6 91.8 91.2 92.7 93.7 94.0 94.6 92.7 

BR13 83.5 91.6 91.1 92.5 93.5 93.8 94.6 92.7 

BR14 83.3 91.3 90.6 92.4 93.4 93.8 94.5 92.6 

BR15 83.2 91.0 90.4 92.4 93.3 93.7 94.4 92.7 

Average 86.7 92.7 92.9 93.9 94.7 94.9 95.1 93.9 

Average 
CPUTime 

69 633 296 320 500 303 500 39 

 

It is noteworthy to note that the computing CPU Times 

could not be compared directly because in each work a 

specific computing machine was used. Obviously, for all 

approaches, the running times are lower for the weakly 

heterogeneous problems and increase with the number of 

different box types.  Our approach outperforms all the existing 

approaches that were published before 2012 while taking 

much less CPU Time computing. As described in section II, 

the objective of this work is to develop a resolution procedure 

providing good results within very reasonable times. 

B. Considering the weight distribution constraints 

The closer the gravity center is to the middle of the length 

and width, the better the down height is. The evaluating 

criterion of weight distribution is defined using the center of 

gravity of loaded boxes; while for each box with an even 

weight density, the center of gravity of the box coincides with 

its geometric center. The nearer the center of gravity is to the 

ideal center of gravity for the container, the evener the weight 

distribution of boxes is.  

 

To test the effectiveness of our algorithm when fitting the 

weight distribution constraints, we use the test data sets named 

wtpack1–wtpack7 [27], and we set the maximum CPU time to 

50 seconds for all the following computational tests. Table III 

summarizes the OAA results showing that an average volume 

utilization of more than 90% is provided. 

 

TABLE IIII 

PERFORMANCE OF THE OAA WHEN CONSIDERING THE WEIGHT 

DISTRIBUTION CONSTRAINTS   

Test Set Average volume utilization 
wtpack1 90.48 

wtpack2 90.56 

wtpack3 90.99 

wtpack4 90.76 

wtpack5 90.83 

wtpack6 91.00 

wtpack7 90.59 

Average 90.74 

 

C. Considering all the additional constraints 

In this section, we consider simultaneously the weight 

distribution, positioning, Load-bearing constraints. To the best 

of our knowledge, there is no work in the literature dealing 

with such realistic problem. Thus, we create 21 test instances, 

which are the 3 first instances from the wtpack test set. For 

each box line type, two additional binary parameters are added. 

The first parameter indicated whether the boxes in this line 

shall be placed on top or not. It takes1, if we shall place this 

kind of boxes on top, 0 otherwise. The second binary 

parameter indicates if a box is fragile or not. It is equal to 1 if 

the box is fragile, 0 otherwise. We compromise with the 

positioning but the load-bearing is restrictive (no non-fragile 

box is placed on top of a fragile box). The results are 

presented in Table IV. The first column holds the label of the 

test pack: we call the new set data SPWpack (S stands for 

stacking, P for positioning and W for weight distribution). The 

integer after SPWpack determines the number of box types. 

The second column indicates the total volume utilization in 

percentage. 
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TABLE IV 

PERFORMANCE OF THE OAA WHEN CONSIDERING ALL THE ADDITIONAL 

CONSTRAINTS   

Test Set Average volume utilization 
SPWpack3 90.81 

SPWpack5 89.22 

SPWpack8 90.11 

SPWpack10 89.81 

SPWpack12 90.26 

SPWpack15 90.70 

SPWpack20 89.60 

Average 90.07 

 

From Table IV, we can conclude that even if we take into 

consideration all the additional realistic constraints, the 

tailored procedure still provides, in average, solutions with up 

to 90% of volume utilization in at most 50 seconds. 

VI. CONCLUSION 

We investigate the Single Container Loading Problem, the 

problem of loading rectangular boxes into containers, which is 

a common basic activity in material handling. In this work, we 

propose a new heuristic for the single container loading 

problem. The aim is to pack three-dimensional small items 

called boxes in a three-dimensional big item called container 

efficiently so as the volume utilization is maximized. The free 

space selection and the block placement are performed 

deterministically, while a greedy-two-step lookahead 

algorithm ranks a block for a select empty space. The overall 

approach was developed using the Java language and 

extensively tested on over than 1600 Benchmark instances 

from the literature. The computational experimentation proves 

that the proposed procedure is competitive, as good solutions 

are found in very reasonable times. To go further in taking 

into consideration more realistic constraints, we adapted our 

algorithm to fit the weight distribution, the positioning, and 

the stacking constraints. The final framework would be used 

to complete the 3D graphic in order to implement it in the 

EWM related module of SAP. 
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