
Journal of Economy & International Finance (EIF) 
Vol.3pp.41-75 

 
Copyright -2024  
ISSN: 2961-6638 

Empirical estimation of the safety stock using the GARCH model, Historical simulation and 

extreme value theory: Comparative study 

Momtez charfi 1 , Ahmed Ghorbel  2 

1 Faculty of Economics and Management of Sfax, University of Sfax, Sfax 3018, Tunisia 

2 Faculty of Economics and Management of Sfax, University of Sfax, Sfax 3018, Tunisia 

 

Abstract 

Safety stock (SS) is an appropriate tactic for dealing with demand and supply uncertainty in 

order to avoid stock-outs. In the literature, previous work on SS estimation assumes that 

forecast error distributions are independent and identically distributed following the normal 

distribution. These quantiles are related to service cycle levels (CSL), which are important for 

achieving business objectives. Thus, the aim of this research is to propose two combined 

empirical methods to determine SS more robustly and compare them with traditional methods 

according to different supply chain parameters. The first method combined, called Filtered 

Historical Simulation (FHS), involves combining the GARCH model with the simulation 

method. The second combination, called Conditional Extreme Value Theory (CEVT), is the 

combination of the GARCH model with the EVT model. To validate these proposed 

combined methods, the SS is also estimated using traditional methods, such as simple 

exponential smoothing (SES), simulation and kernel density estimation (KDE), the GARCH 

method and the Rolling GARCH method.  

The methodology is illustrated using both simulation data and real case data study, with 

reference to two criteria: Backorders and Tick-Loss (TLE). We used simulated data following 

an 𝐴𝑅(1) process with residuals following the normal and log-normal distribution, then real 

data representing the actual demands used for the manufacture of corrugated board products 

by the board manufacturing company. 

The results are confirmed using the ANOVA test and show the superiority of methods based 

on the GARCH model, but its performance varies according to the law of the residuals, the 

delivery time and the effect of variation in the 𝜙 parameter. 

Keywords: safety stock, CEVT, FHS, TLE, Lead time (LT), Backorders, ANOVA. 
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1. Introduction  

1.1 Research and motivation 

   Make-to-order manufacturing requires the expectation of an order, a work order or a sales 

order that can be created for a product before the advanced planning and scheduling process is 

involved. Forecasting is the basis of planning. Forecasts are not based on demand, but on 

other parameters, such as lead time, as in [2]. Lead time is the time that flows between the 

placing of a supplier order and the delivery of the goods to the customer. However, 

forecasting is seen as the core approach to managing production systems based on 

requirements planning. 

   In the literature, there are numerous classifications of types demand [50,46]. However, little 

attention has been paid to measuring the uncertainty around these forecasts, despite the fact 

that important applications, such as safety stock (SS) determination and replenishment in 

many replenishment policies, depend on uncertainty estimation. Research into SS estimation 

can be divided into two groups. 

The first group assumes that the distribution of forecast errors is normal, independent and 

identically distributed. The second group takes heteroscedasticity into account. In the second 

group, some research suggests applying SS estimation when demands are extreme.  

1.2 Literature review 

1.2.1 Normal forecast errors  

   Traditional forecasting approaches are based on point forecasts, such as exponential 

smoothing (SES), autoregressive moving average (ARMA), integrated autoregressive moving 

average (ARIMA). These methods are vital for medium-term applications in particular, and 

are also known for their simplicity in practice. 

However, the extent to which it approximates the demand process has not been sufficiently 

tested, due to the limited repertoire of alternatives to forecasting models in software. The 

above-mentioned methods can be used if the demand process is perfectly identified and the 

forecast errors are therefore independent and identically distributed. These errors are 

generally assumed to be independent and identically distributed, as in Buffa [14], Fotopoulos 

et al. [25 ], Eppen and Martin [21], Potamianos et al. [43], Reichhart et al. [44 ], Gallego-

García et al. [27], and Antic et al. [4 ]. Itis reasonable to ask whether correct identification in 
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the process is possible given the complex relationships that drive demand. Thus, testing on the 

aforementioned error assumptions is necessary.  

Thesupply forecast does not take account of any deviation from these assumptions, and 

focuses on comparing different forecast error measures, such as mean absolute percentage 

error or root mean square error, without analyzing residual autocorrelation and deviations 

from the statistical distribution [8].According to [51] and [52], inventory control measures 

such as cycle service level, scaled safety stock and backorders may be underperforming if 

residuals are autocorrelated and distributed differently.  

1.2.2 Non-normal forecast errors  

   Apart from theoretical models which assume that forecast errors are normal, in practice this 

is not the case, given the complexity of the supply chain. When the deviation from 

assumptions is presented as generalized autoregressive conditional heteroscedasticity 

(GARCH) [11], kernel density estimation (KDE) [47] and historical simulation [37] can be 

useful for throwing out the size of the uncertainty. In a supply chain case study, Zhang and 

Kline [57] showed that ignoring time heteroscedasticity can increase inventory costs by up to 

30% when demand autocorrelation is very positive. 

Syntetos and Boylan [48] examined the empirical performance of forecasting methods by 

estimating the variability of lead-time forecast errors to improve overall system performance. 

Trapero et al [52] determined the variability of parametric delay forecast error models by 

applying GARCH models. Using simulated and real data, they showed that the error standard 

deviation forecast exhibits temporal autocorrelation for high lead times, and that GARCH 

models gave relevant results. In addition, the distribution of demand is generally assumed to 

be known, although in practice future demand has to be forecast.  

Consequently, forecast errors are among the various factors required to calculate the SS [32], 

and determining their precise standard deviation is particularly difficult. Some authors, such 

as Boute et al [12] and Charnes et al [15], have criticized these assumptions, which can lead to 

errors in decisions concerning safety stocks and service targets that are not met. Trapero et al 

[52- 53] used empirical methods based on KDEs and GARCH parametric models to calculate 

SS. 

They have shown that the kernel density estimation technique gives better results for shorter 

lead times because non-normality dominates. For longer lead times, conditional 
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heteroscedasticity is more important and GARCH models are more suitable [53]. For 

continuous demand data, non-parametric approaches, such as simulation and KDE, take into 

account the non-normality of forecast errors.  

These techniques can be used when the distribution of forecast errors is not known. The 

effectiveness of these methods has been demonstrated, for example, in the work of Strijbosch 

and Heuts [48], Manary et al. [33] and Trapero et al. [52]. Manaire et al [33] attempted to 

correct for the impact of forecast bias, non-normal forecast errors and forecast errors. The 

authors found SS reductions of around 15%. Strijbosch and Heuts [48] used an empirical 

dataset from the pharmaceutical industry to adjust statistical forecasts for demand items. They 

provide information on the combined performance of forecasting and inventory estimation. 

1.2.3 The emergence of extreme requirements 

    Despite their contributions to research, not all the above-mentioned works have taken into 

account the presence of irregular data in the supply chain. This is highly relevant to inventory 

management, where special events and promotions are commonplace. The use of Extreme 

Value Theory (EVT) improves and adjusts the SS calculation for items that may experience 

extraordinary demands. In a supply chain case study, this approach has been reported as 

successful by Gallego et al [26], Avanzi et al [5], Bimpikis and Markakis [10], Biçer [9] and 

Fałdzinski et al [22]. However, which method should be used if the error forecasts possess 

both an auto-correlated standard deviation, an unknown density function, and an irregular 

demand process? To resolve these questions, several combination methods have been 

proposed in the literature, and in practice, it turns out that combining two or more forecasts 

gives the best performance compared with a single method [16].  

1.3 Objective of the study  

  According to the literature overview above, previous work on SS estimation assumes that 

forecast error distrubutions are normal and identically distributed.  In order to assess 

violations of this assumption, there are numerous methods of resolution in the recent 

literature, such as considering the distribution of forecast errors according to the loi lognormal 

and using the GARCH model which takes into account the phenomenon of herocedasticity, 

and using EVT to take the occurrence of extreme requirements. 

However, the performance of these methods is not guaranteed, as there is a lack of 

comparative studies. Consequently, the final objective of this research can be summarized by 
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the following main research question. How can we improve SS estimation methods to 

simultaneously consider heteroscedasticity phenomena and the occurrence of extreme 

demands?  

This work proposes to estimate SS using two methods mentioned above, which are also 

widely applied in finance and insurance to estimate the value at risk, which is defined as the 

quantile of the distribution studied for a given confidence level. The first method consists in 

combining the simulation and GARCH methods known as filtered historical simulation 

(FHS), while the second consists in combining EVT with the GARCH model, known as 

conditional extreme value theory (CEVT). 

The choice of combining EVT and simulation with GARCH is also justified by the success of 

these methods in providing a sufficient estimate of VaR in the context of risk measurement. 

For each method, in the first parameters of the GARCH step, we extract the standardized 

residuals, then, in the second step, we apply either EVT or historical simulation to the residual 

series obtained from the GARCH model. This two-step procedure differs from traditional 

combined techniques, such as that applied by Trapero et al [53] to combine kernel estimation 

and GARCH methods. To our knowledge, this is the first work to evaluate SS using these two 

methods and to compare their performance with traditional methods, assuming a demand that 

follows the AR process with non-normal distributions for the residuals. We follow a 

methodology relatively similar to that of Trapero et al [53], with a few differences, notably in 

the study case and in the choice of distribution parameters. Trapero et al [ 53 ] used 

optimization to determine the optimal weight of each method used in combination. 

In contrast, in our paper, the combination is based on simulation and EVT methods applied to 

standardized residuals from the GARCH model. In addition, the combination of GARCH 

models is very useful in estimation methods for other fields, such as stock price volatility 

estimation [40], value-at-risk estimation [18], crude oil price volatility estimation [56], etc. 

The novelty of this research concerns the proposal of new combined methods for SS 

estimation in the case where forecast errors are not normal and also not identically and 

simultaneously distributed and considering heteroskedasticity phenomena and the occurrence 

of extreme requirements. 

This is the first time that a combination of quantiles has been used to calculate FHS and 

CEVT. To validate the superiority of the proposed methods, simulation and real data from a 

case study are applied. In the simulation, two cases are studied:  
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Case 1: when the forecast error follows a normal distribution,  

Case 2: when the forecast error follows a lognormal distribution,  

In addition, to validate the statistics and simulation results obtained, the one-way ANOVA 

technique is applied. 

2. Materials and methods 

2.1 Estimation of theoretical safety stock  

   The safety stock can be calculated using different approaches. The most appropriate method 

depends on the circumstances of an organization. The cost of stock-outs is very difficult to 

estimate in practice. Safety stock sizing depends on levels of demand uncertainty and 

corresponding forecast errors, when forecast errors are assumed to be independent and 

identically distributed. In other words, forecast errors follow a normal distribution with zero 

mean and constant variance; the safety stock is calculated using equation: 

𝑆𝑆 =  𝑘𝜎  

𝑘: is called the safety factor with a chosen service level cycle (CSL).  

𝜎  : is the standard deviation of total demand forecast errors over a period of L (the 

reapprovisionnement lead time). 

𝜙(. ) is the standard normal cumulative distribution function. Delivery time (DL) is assumed 

to be known and constant. In this case, the problem is how to calculate 𝜎 . A first theoretical 

approach is considered in which the standard deviation of the forecast error 𝜎  is estimated on 

the basis of the demand forecast model. 𝜎  is estimated using the standard deviation 𝜎  which 

is based on the forecast mean square error (MSE).  

𝜎 = √𝑀𝑆𝐸 

The cumulative variance forecast error is calculated, then the safety stock is calculated using 

the well-known theoretical formulas mentioned in equation: 

𝑆𝑆 =  𝑘𝜎 √𝐿𝑇 

This equation is used when forecast errors are independent and do not vary for longer forecast 

horizons [6]. However, when demand can be expressed by a single method of the exponential 

smoothing model (SES) [ 29]. SS is given: 
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SS = 𝑘𝜎 √𝐿 1 + 𝛼(𝐿 − 1) +
1

6
𝛼 (𝐿 − 1)(2𝐿 − 1) 

where: 𝛼 : is the parameter SES which is constant and varies between 0 and 1.  

  One of the main drawbacks of the theoretical approach is that it does not take into account 

the fact that forecast errors are not independent in reality. Furthermore, the true model of each 

element is not found, and the choice of forecast error model cannot be under the company's 

control. To overcome this forecast error problem, and the problem when the forecast error 

distribution is unknown, a second approach is considered in which neither the point forecast 

model nor its parameters need to be known. This is mainly beneficial in practice, especially 

when this information is not provided to users. 

2.2 Empirical estimation of safety stocks  

Various empirical approaches can be used to calculate SS. Some of them assume the 

normality distribution of forecast errors, but take into account the fact that the variance of the 

forecast error varies over time, i.e. taking into account heteroscedasticity phenomena. In this 

case, the SS can be calculated using equation: 

𝑆𝑆 =  𝑘. 𝜎 = 𝑘.
∑ (𝜀 ,  −  𝜀 )

𝑛
 

where 𝜀 ,  is the forecast error for a certain lead time L, expressed in equation :  

𝜀 ,  = 𝑦 − 𝐹 =  (𝑦 − 𝐹 ) 

𝜀̅  is the average error during the time delay  

𝑦  and 𝐹   are respectively the actual and predicted values during the delay. 

 Some other of these approaches take into account the non-normality of forecast errors (the 

distribution of forecast errors is unknown) due, for example, to the promotion periods and 

complexity of markets; the safety stock is calculated as the quantile (denoted by Q) of the 

distribution of forecast errors at the probability defined by the CSL.  

2.2.1 Simple exponential smoothing (SES)  

According to Gardner [28], SES is the most widely used forecasting method in the short term. 

It is an easy-to-understand and efficient procedure to use when the underlying The demand 

model is composed of level and random components. Even when the underlying demand 
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process is more complicated, exponential smoothing can be used as part of an updating 

procedure.  

The SES method is a 𝑡 + 1 forecasting method. It is used with trendless time series. The 

principle of this calculation method is to give more importance to the last observations made. 

Consequently, SES is used as expressed in equation: 

𝑀𝑆𝐸 , = 𝛾(𝜀 , ) + (1 − 𝛾)𝑀𝑆𝐸 ,  

where: : 𝑀𝑆𝐸 , : is the forecast for 𝜎  at time 𝑡 + 1.  

𝜀 ,  : the cumulative forecast error during the deadline. 

𝛾: a constant smoothing parameter.  

Its value lies between 0 and 1. Following Morgan's proposal [31], the value of γ and the initial 

value of the equation are optimized by minimizing the mean-squared errors.  

2.2.2 Historical simulation (HS) 

  Historical simulation is used as the most popular and efficient method [40]. The main feature 

of this method is that it is relatively simple to set up, not making any assumptions about the 

shape of the distribution and its dependence on data availability and sample size. Although 

predicting the future involves inherent uncertainty, a point forecast can be very useful for 

quickly describing the expected general path with less complexity. The first step before sizing 

the SS is to calculate the point forecast. This value is then used together with the forecast 

error for quantile forecasting approaches. The SES method is used in this work to find the 

point forecasts [28], it is formulated as mentioned:   

𝐹 = 𝛼 𝛾 + (1 − 𝛼 )𝐹  

where 0 < 𝛼′ < 1, h is the forecast horizon. Note that the lead time demand forecast 𝐹  is 

expressed as mentioned in equation: 

𝐹 =  𝐹 = 𝐿 ∗ 𝐹  

Next, the empirical quantile method is a simple approach to estimating SS. It is based on the 

empirical distribution of historical data on lead-time forecast errors expressed according to the 

equation: :  

𝑆𝑆 =  𝑄(𝐶𝑆𝐿) –  𝑝𝑜𝑖𝑛𝑡 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡  
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 where Q(CSL) is the quantile of the empirical distribution at CSL 

2.2.3 KERNEL Density Estimation (KDE) 

This technique represents the probability density function 𝑓 (𝑥) of lead time forecast errors, 

without the need for assumptions about the data distribution. The KERNEL density formula 

for a series 𝑋 at a point x is given by : 

𝑓(𝑥) =
1

𝑁ℎ
𝐾(

𝑥 − 𝑋

ℎ
) 

 where 𝑁: is the sample size, 

 𝐾( ): is the KERNEL density method function, it is chosen as the density of a standard 

Gaussian function (zero expectation and unit variance) ; 

ℎ: forecast horizon.  

It is shown that the optimal KERNEL function, often called KERNEL Epanechnikov [47], is: 

𝐾 (𝑡) =

3

4√5
1 −

1

5
𝑡         − √5 ≤ 𝑡 ≤ √5

0                       ∀𝑡

  

 Although the choice of h remains a subject of debate in the statistical literature, the following 

optimal bandwidth for a Gaussian KERNEL is generally chosen: 

ℎ = 0.9𝐴𝑁  

Where 𝐴: is an adaptive estimate of the extension given by  

𝐴 ∶ min (standard deviation, quantile interval /1.34)            

The quantile can be estimated nonparametrically using the empirical distribution fitted by the 

KERNEL approach to lead time forecast errors. 

2.2.4 GARCH models 

To cope with time variation in the standard deviation of lead time forecast errors, generalized 

autoregressive conditional heteroscedastic (GARCH) models can be used to capture fat tails 

and heteroscedasticity [40]. The expression of GARCH models (𝑝, 𝑞) is given by the 

conditional variance of forecast errors at time 𝑡 +  1. This variance is given by : 
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𝜎 = 𝜔 + 𝑎 𝜀 + 𝛽 𝜎  

where 𝑞 is the lagged conditional variance terms (𝜎 ) and 𝑝 is the lagged squared error terms 

(𝜀 ).  

Note that the SES method in the previous equation is a special case of the GARCH model 

when 𝑝 =  𝑞 =  1. Knowing that a GARCH (1,1) is given by : 

𝜎 = 𝜔 + 𝑎 𝜀 + 𝛽 𝜎  

  The Ses method is a feature of a GARCH model with 𝛽 = 1 − 𝑎  𝑎𝑛𝑑 𝜔 = 0.. We apply 

the GARCH (1,1) model on the cumulative forecast error of the lead time instead of that of 

the forecast error, the equation can be rewritten as follows:  

𝜎 , = 𝜔′ + 𝑎 𝜀 , + 𝛽 𝜎 ,  

     We focus on the GARCH (1,1) model using an overlap approach to estimate 𝜎 ,   as a new 

sample becomes available. 

Next, the safety stock is calculated using the equation  

𝑆𝑆 = 𝐷 + Q(CSL) 𝜎 − 𝑝𝑜𝑖𝑛𝑡 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 

𝐷 is the demand forecast for a certain lead time LT,  

𝜎 is the standard deviation of the forecast error for a certain lead time LT,  

Q(CSL) is the quantile of the standard normal distribution at CSL and the point forecast is 

given in equation. 

2.2.5 Extreme value theory (EVT)  

Fisher et al [24] specified the shape of the limiting distribution by appropriate normalization 

of maxima. Two traditional approaches are used in the literature to study extreme events.The 

first is direct modeling of the distribution of minimum or maximum realizations (block 

maxima method). The other is to model exceedances above a particular threshold (peak-on-

threshold method). 

   De Haan et al [17] study quantile estimation using value theory. McNeil [34] studies tail 

estimation for distribution loss severity and estimation of risk measures for demands using 

EVT. Embrechts et al [20] provide an overview of EVT as a risk management tool. Müller et 

al. [39] and Pictet et al. [42] study the probability of overruns and compare them with 

GARCH,McNeil [44]provides a comprehensive overview of EVT for risk management.  
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McNeil and Frey [36]establish a new two-step approach to estimating tail risk measures for 

heteroskedastic time series, such a method is a combination of GARCH models and EVT. 

Some applications of EVT to finance and insurance can be found in Embrechts et al. [19] and 

Reiss et al. [54].EVT is a powerful framework within which to study the tail behavior of a 

distribution. Classical univariate extreme value theory was developed by [24]. Let (𝑋 , … , 𝑋 ) 

be independent and the variables identically distributed. Let 𝑀  be the maximum of these 

variables, 𝑀 = (𝑋 , … , 𝑋 ).  Under conditions of regularity, we can prove that 𝑀 tends 

towards an asymptotic distribution that depends only on that of the base variable.    

   Let 𝑋 be a random variable with distribution 𝐹. We denote 𝐹  the conditional excess 

distribution function (CDF) above a high threshold 𝑢 defined as conditional probability: 

𝐹 (𝑦) = 𝑃(𝑋 − 𝑢 ≤ 𝑦 𝑋 > 𝑢⁄ )      0 ≤ 𝑦 ≤ 𝑥 − 𝑢 

where 𝑦 = 𝑥 − 𝑢 is the excess over 𝑢 and 𝑥_𝐹 is the right extremity of F. Following Balkema 

et al. [56] and Pickands[57], the limiting distribution of 𝐹  can be approximated by : 

𝐺 (𝑥) =
1 − (1 +

𝜉

𝜎
(𝑥 − 𝑢)) ⁄  𝑠𝑖 𝜉 ≠ 0

1 − exp (−(𝑥 − 𝑢) 𝜎)⁄        𝑠𝑖 𝜉 = 0

  

where𝜉 is the tail index and 𝜎 > 0 is the scaling parameter. The 𝐹 distribution can be 

expressed in terms of the conditional distribution in excess above the u threshold as follows: 

𝐹 (𝑥) = 1 − 𝐹 (𝑢) 𝐹 (𝑥) + 𝐹 (𝑢) 

𝐹 (𝑥) =
𝐹 (𝑥) − 𝐹

1 − 𝐹 (𝑢)
 

  Consequently, the distribution of u overruns is accurately known if the distribution of 𝑋 is 

known. The function 𝐹(𝑢) can be estimated nonparametrically by : 

𝐹(𝑢) =
1

𝑛
𝐼(𝑋 < 𝑢) = 1 −

𝑁

𝑁
 

where 𝑁: is the total number of observations, 

𝑁 : represents the number of exceedances above the threshold 𝑢. 

 After replacing 𝐹 (𝑦) by 𝐺 , (𝑦), we obtain the following estimate for 𝐹(𝑥): 

𝐹(𝑥) =
𝑁

𝑁
1 − 1 +

𝜉

𝜎
(𝑥 − 𝑢) + 1 −

𝑁

𝑁
= 1 −

𝑁

𝑁
1 +

𝜉

𝜎
(𝑥 − 𝑢)  

Inverting this expression, we obtain an expression for 𝑆𝑆 ⁄  (unconditional) quantiles 

associate with a given probability 𝑝: 



Journal of Economy & International Finance (EIF) 
Vol.3pp.41-75 

 
Copyright -2024  
ISSN: 2961-6638 

𝑆𝑆 ⁄ = 𝑢 +
𝜎

𝜉
((

𝑁

𝑁
𝐶𝑆𝐿) − 1) − 𝑝𝑜𝑖𝑛𝑡 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 

2.3 Proposed combined safety stock estimation 

 Two combinations of methods are studied in this research. The first named Filtered Historical 

Simulation (FHS) involves combining the GARCH model with the Historical Simulation 

Method (HS). The second combination named Conditional Extreme Value Theory (CEVT) 

concerns the GARCH model with Extreme Value Theory (EVT).  

 

 

 

2.3.1 Filtered Historical Simulation (FHS) 

The power of this method lies in its ability to adapt to the presence of phenomenal 

heteroscedasticity and the asymmetry of the empirical distribution, unlike the traditional 

simulation method. The application of this method is given by modeling the data by the most 

appropriate GARCH specification (parametric), deriving standardized residuals and applying 

the historical simulation method (non-parametric) to calculate the quantile. Next, the safety 

stock is obtained using the GARCH model equation, where Q(CSL) is the quantile of 

standardized residuals obtained from the GARCH model. 

2.3.2 Conditional Extreme Value Theory (CEVT)  

To take into account the phenomena of heteroscedasticity and the occurrence of extreme 

demands simultaneously, we can combine the GARCH model and extreme value theory by 

following the same two-step estimation procedure proposed by McNeil and Frey [36]. This 

method is known as conditional EVT or GARCH-EVT: 

 Step 1: Fit a GARCH family model to demand data by quasi-maximum likelihood 

estimation. We assume that innovations are normally distributed when maximizing the log-

likelihood function. Once the parameters have been estimated, we can extract the residuals to 

check the adequacy of the GARCH modeling. 

 Step 2: We apply EVT to the residual calculation standardized in step 1 to model the 

innovation tail. In this work, we set a certain threshold and retain any innovation above it as 

extreme (POT method). The threshold is determined under the condition that only 10% of 
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innovations are above it weconsider the quantile of innovation distribution to be of the order 

of 90%.  

Next, we estimate the quantiles of innovations as presented in equation where Q(CSL) is not 

applied to demand but applied to standardized residual series. Finally, we deduce the safety 

stock for different levels with Q(CSL) being the quantile of the standardized residuals 

obtained from the GARCH model.  

2.4 Performance metrics of the safety stock estimation method 

2.4.1 Inventory performance measures 

 The different forecasting approaches are evaluated and compared through the different curves 

described in the results section. In this work, two variables are considered in the curves: 

scaled safety stock and backorders. Inventory investment is calculated as follows: first the 

prediction interval for each item is calculated, then the average of the upper bound of the 

prediction interval per item and via items corresponds to inventory investment. Remainder 

units are calculated as the difference between actual sales and quantile predictions.  

In fact, if such a difference is positive, it corresponds to out-of-stock units. These units are 

added up for each item, and then the average backorder units for all items are calculated. 

2.4.2 Tick-Loss Function (TLE) 

    To facilitate comparison between different approaches to safety stock calculation, we need 

to add other performance measures in addition to inventory investment and backordering. 

According to Trapero et al [53], the solution is given by the Tick-Loss Function (TLE) used in 

economic performance. The associated function averages the asymmetrical costs of under- 

and over-forecasting. The best approach is the one with the minimum loss value. We combine 

these approaches to minimize the Tick-Loss. The expression for TLE is given by :  

𝑇𝐿 (𝑦 , 𝐹 ) =
𝛼|𝑦 − 𝐹 |               𝑠𝑖 𝐹 ≤ 𝑦
(1 − 𝛼)|𝑦 − 𝐹 |  𝑠𝑖 𝐹 ≥ 𝑦

  

where 𝑦  is the actual value at time t,  

𝐹 is the predicted value at time t, the parameter α varies between 0 and 1 and any α-quantile 

of the predictive distribution is an optimal point forecast. In this work, the target quantile is 

given by the CSL. 

2.5 Implementation of safety stock estimation methods 

   In this study, we set the targets at 85%, 90%, 95% and 99%. The data set is divided as 

follows: The first part of the data presents 30% of the data and is used to establish the point 

demand forecast, primarily by calculating the exponential smoothing parameter and its initial 
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value. The second part is used for the KDE, GARCH, Rolling GARCH, FHS and CEVT 

methods. The last part is used for the KDE, GARCH, Rolling GARCH, FHS and CEVT 

methods. The last part is used to test the quantile predictions of the methods considered. 

 The Epanechnikov kernel smoothing function is used for the KDE; the bandwidth of the 

appropriate value that is optimal for normal distribution densities is defined [54]. The 

parameters of the GARCH (1,1) model are estimated on the basis of the maximum likelihood 

estimation method. The analysis was carried out using R. The R package “rugarch” is used to 

estimate the GARCH parameters and to extract the standardized residuals, using the “evir” 

package to estimate the model applied to the filtered data. We use the “forecasts” package to 

calculate the exponential smoothing parameter in equal parts and the “kde1d” package to 

provide an efficient implementation of kernel density estimators. 

 

 

3. Simulation results 

      To assess the performance of the proposed combined methods, we carried out a Monte 

Carlo simulation with 100 repetitions. The duration of each repetition was set at 700 

realizations. 

3.1 Case ∅When the forecast error follows a normal distribution  

    We have assumed that demand at time t follows an 𝐴𝑅(1) process as mentioned as follows: 

 𝐷 = 𝜇 + ∅ 𝐷 +   𝜀  

where μ is a positive constant, ∅ is the autoregressive parameter and  𝜀 follows the normal 

distribution with zero mean while ∅ was allowed to vary between -0.9 and 0.9.  

The value of 𝜇 used for the simulation is 150.  

   The TLE on the selected sample is averaged over 100 repetitions, then quantiles that include 

the following values namely 85%, 90%, 95% and 99%, versus autoregressive ∅ parameters 

that vary between -0.90 and 0.90 are performed and shown in figures 1 and 2. 
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Figure 1: Average tick-loss values for one-week lead times and when forecast errors follow 𝑨𝑹(𝟏)𝒏𝒐𝒓𝒎 

 
Figure 2: Average tick-loss values for four-week lead times and when forecast errors follow 𝑨𝑹(𝟏)𝒏𝒐𝒓𝒎. 

Table 1 gives the tick-loss values of each SS measurement method for the four CLS levels 

and for a one-week and four-week lead time, assuming a demand that follows the AR(1) with 

normal distribution and ∅ = −0.50 𝑜𝑟 ∅ = 0.5. 

For example, the tick-loss value in the case of ∅ =  0.50 and the one-week lead time is 1.739 

at a level of 85% when we apply the CEVT method. This value decreases to 0.205 when CSL 

is 99%. We choose the four-week period to imply a minimum tick-loss value of 0.191 for the 

95% level and 0.08 for a 99% level. 

 Note the sensitivity of tick-loss to various factors, such as the value of ∅, the supply lead time 

and the CSL level. It appears that the CEVT method provides the best performance in the 

majority of cases, followed by the FHS and GARCH methods. This highlights the fact that 

there is autocorrelation in the estimation of error variability, which can be explained by the 

fact that the prediction model does not correspond exactly to the demand generation process. 
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Traditional methods do not perform as well as GARCH

offers the worst performance in terms of Tick

Table 1. Tick-loss values  to ∅ = 0.50

  

   

CSL 85% 90% 95%

Ses   2,259      1,713      

Sim   1,917      1,445      

KDE   1,920      1,445      

Garch   1,896      1,423      

Roll   1,895      1,422      

CEVT   1,739      1,295      

FHS   1,896      1,425      

  

   

CSL 85% 90% 95%

Ses   2,388      1,818      

Sim   1,904      1,433      

KDE   0,311      0,266      

Garch   1,889      1,419      

Roll   1,889      1,418      

CEVT   1,942      1,422      

FHS   1,890      1,419      

The Tick-Loss values in the table are also plotted in Figure 3. For example, the Tick

value in the case of ∅ = −0.50

CEVT method. This value decreases to 0.201 when the CSL becomes 99%. 

For a one-week, it appears that the FHS method performs best in the majority of cases, 

followed by the CEVT and GARCH methods. The traditional methods do not perform as well 

as the GARCH-based methods.

al of Economy & International Finance (EIF) 

 

Traditional methods do not perform as well as GARCH-based methods. The KDE method 

offers the worst performance in terms of Tick-loss for ∅ = −0.5 and a delay of four weeks.

50 𝑎𝑛𝑑 ∅ = −0.50 when predicting errors following a normal distribution.

DL= 1 Week 
 

95% 99% 85% 90% 95% 

  1,023      0,280       1,896      1,429      0,840   

  0,849      0,219       1,895      1,429      0,840   

  0,851      0,221       1,897      1,431      0,842   

  0,834      0,214       1,880      1,412      0,827   

  0,833      0,214       1,879      1,413      0,827   

  0,760      0,205       1,846      1,363      0,755   

  0,834      0,214       1,881      1,413      0,828   

DL= 4 Week 
 

95% 99% 85% 90% 95% 

  1,095      0,304       1,916      1,444      1,444   

  0,841      0,218       1,907      1,436      1,436   

  0,191      0,080       1,926      1,454      1,454   

  0,830      0,214       1,833      1,364      1,364   

  0,830      0,214       1,900      1,428      1,428   

  0,785      0,205       1,814      1,353      1,353   

  0,830      0,216       1,830      1,362      1,362   

Loss values in the table are also plotted in Figure 3. For example, the Tick

50 and a four-week  is 1.814 at a level of 85% when we apply the 

CEVT method. This value decreases to 0.201 when the CSL becomes 99%. 

it appears that the FHS method performs best in the majority of cases, 

followed by the CEVT and GARCH methods. The traditional methods do not perform as well 

based methods. 

based methods. The KDE method 

and a delay of four weeks. 

when predicting errors following a normal distribution. 

99% 

0,840      0,219   

0,840      0,221   

0,842      0,222   

0,827      0,214   

0,827      0,214   

0,755      0,176   

0,828      0,216   

99% 

1,444      0,223   

1,436      0,222   

1,454      0,230   

1,364      0,218   

1,428      0,218   

1,353      0,201   

1,362      0,214   

Loss values in the table are also plotted in Figure 3. For example, the Tick-Loss 

week  is 1.814 at a level of 85% when we apply the 

CEVT method. This value decreases to 0.201 when the CSL becomes 99%.  

it appears that the FHS method performs best in the majority of cases, 

followed by the CEVT and GARCH methods. The traditional methods do not perform as well 
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(a) DL= 1 Week   ∅ = 0,50 (b) DL= 1 Week   ∅ = -0,50 

  

(c) DL= 4 Week   ∅ = 0,50 (d) DL= 4 Week   ∅ = -0,50 

 
Figure 3. Tick-Loss values in the case of a normal distribution for ∅= 0.50 (a,c) and ∅ = -0.50 (b,d) and delays 

of one week (a,b) and four weeks (c,d)... 

Figure 4 shows the trade-off curves in the case of a lognormal distribution for ∅ = 0.50 (left) 

and ∅ = -0.50 (right) and lead times of one week (top panel) and four weeks (bottom panel). 

This figure represents backorders versus inventory investment. Each curve in each panel 

contains four specific points corresponding to the four CSL targets (85%, 90%, 95% and 

99%). 
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(a) DL= 1 Week   ∅ = 0,50 (b) DL= 1 Week   ∅ = -0,50 

  

(c) DL= 4 Week   ∅ = 0,50 (d) DL= 4 Week   ∅ = -0,50 

Figure 4: Trade-off curves for AR (1) in the case of a normal distribution for ∅= 0.50 (a,c) and ∅ = -0.50 (b,d) 

and lead times of one week (a,b) and four weeks (c,d).  

We can see in the case of ∅ =  −0.50 that the CEVT method performs well in terms of 

inventory investment and backorders, has targets of 85%, 95% and 99% for a four-week lead 

time. The 99% level provides a lower level of backorders, but does not give the minimum 

inventory investment. This makes it difficult to determine the best method. We can also see in 

the case of ∅ =  0.50 that the CEVT method performs well with the GARCH model, 

especially for one week.  

3.2 Case ∅ where the forecast error follows a lognormal distribution 

      Let  𝐷 be the demand at time t that follows an AR process (1) as mentioned, where μ is a 

positive constant, ∅ is the autoregressive parameter and 𝜀  is independent and identically 

distributed but is not normally distributed. We added log-normal noise with a mean of 0.9 and 

a variance of 1.4, while φ can vary between -0.9 and 0.9.  
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   Tick-loss on the retained sample averages over 100 replicates; quantiles comprising the 

following values, namely 85%, 90%, 95% and 99%, with respect to parameter ∅ are assumed 

to vary between -0.9 and 0.9 and are shown in figures 5 and 6. 

 
Figure 5. Average Tick-Loss values for one-week lead times and when forecast errors follow a lognormal 

distribution. 

 

 
Figure 6. Average Tick-Loss values for lead times of four weeks, when forecast errors follow a lognormal 

distribution. 

Figure 5 includes the case where the delivery lead time (DL) is equal to one, and Figure 6 

includes the case where the DL is four weeks. When the DL case is one week, the CEVT 

method (green line) provided a low value for Tick-Loss for some values of parameter ∅. For 

other values of ∅ where CEVT is not the best method found in this case, the FHS method 

(dark blue line) gave better results followed by the GARCH method (yellow line). This proves 

the better performance of the GARCH model and extreme value theory (CEVT) on the one 

hand, and the GARCH method and simulation method (FHS) on the other, which is explained 

by their nature for capturing the deviation from the normality assumption. When the DL case 
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is four weeks and for negative values of 

∅ =  0.9, the FHS gives a minimum Tick

For positive values of ∅, we find that the CEVT method is the best for certain values of the 

autoregressive parameter, otherwise the FHS takes its place, followed by the GARCH 

method.  

The SES method offers the worst performance in terms of Tick

and simulation methods. 

 Figures 5 and 6 show the overall results, with the minimum Tick

Nevertheless, the performance of GARCH

particular values of parameter 

each quantile of interest. Table 2 gives the Tick

method for the four CSL levels and for a one

that follows the AR (1) process with log

The values in Table 2 indicate the Tick

Table 2. Tick-loss values to ∅ =

distribution. 

   

   

CSL 85% 90% 95%

Ses 0,391 0,320 0,221

Sim 0,350 0,294 0,206

KDE 0,353 0,296 0,208

Garch 0,164 0,135 0,094

Roll 0,339 0,280 0,196

CEVT 0,291 0,228 0,151

FHS 0,160 0,133 0,094

  

   

CSL 85% 90% 95%

Ses   0,390     0,320      

Sim   0,350     0,290      

KDE   0,360     0,300      

Garch   0,320     0,260      

Roll   0,350     0,290      

al of Economy & International Finance (EIF) 

 

weeks and for negative values of ∅ it seems that CEVT is the best method except when 

, the FHS gives a minimum Tick-Loss followed by the GARCH method. 

, we find that the CEVT method is the best for certain values of the 

autoregressive parameter, otherwise the FHS takes its place, followed by the GARCH 

The SES method offers the worst performance in terms of Tick-Losses, followed by the KDE 

Figures 5 and 6 show the overall results, with the minimum Tick-Loss values in bold. 

Nevertheless, the performance of GARCH-based methods can be displayed by choosing 

particular values of parameter ∅ and plotting the trade-off curves and Tick

each quantile of interest. Table 2 gives the Tick-Loss values of each safety stock measurement 

levels and for a one-week and four-week DL assuming a demand 

that follows the AR (1) process with log-normal distribution and ∅ =  0.

The values in Table 2 indicate the Tick-Loss for a given CSL.  

= 0.50 𝑎𝑛𝑑 ∅ = −0.50 when predicting errors following a log

DL= 1 Week 
 

95% 99% 85% 90% 95% 

0,221 0,100 0,350 0,288 0,200 

0,206 0,078 0,329 0,279 0,198 

0,208 0,082 0,333 0,281 0,199 

0,094 0,043 0,183 0,151 0,105 

0,196 0,089 0,349 0,288 0,201 

0,151 0,063 0,368 0,311 0,223 

0,094 0,036 0,171 0,146 0,106 

DL= 4 Week 
 

95% 99% 85% 90% 95% 

  0,220   0,100    0,350       0,290      0,200   

  0,200   0,070    0,330       0,280      0,200   

  0,210   0,090    0,330       0,280      0,200   

  0,180   0,080    0,320       0,260      0,180   

  0,210   0,100    0,350       0,290      0,200   

it seems that CEVT is the best method except when 

Loss followed by the GARCH method.  

, we find that the CEVT method is the best for certain values of the 

autoregressive parameter, otherwise the FHS takes its place, followed by the GARCH 

Losses, followed by the KDE 

Loss values in bold. 

based methods can be displayed by choosing 

Tick-Loss value for 

Loss values of each safety stock measurement 

week DL assuming a demand 

.50 𝑜𝑟 ∅ =  −0.50. 

when predicting errors following a log-normal 

99% 

0,090 
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0,041 
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0,200    0,090    

0,200     0,080   

0,200     0,090   
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CEVT   0,320     0,280      0,200   0,070    0,270       0,220      0,150     0,050   

FHS   0,320     0,260      0,180   0,060    0,310       0,260      0,180     0,070   

The Tick-Loss values in the table are also plotted in Figure 7. For example, the Tick-Loss 

value in the case of ∅ =  −0.50 and a four-week DL is 0.27 at a level of 85% when we apply 

the CEVT method. This value decreases to 0.05 when the CSL becomes 99%.  

For a one-week DL a minimum tick-loss value of 0.105 is achieved only at the 95% level 

using the Garch method. In the same case and at the 90% level, the FHS method gives better 

results. Furthermore, in the case of ∅ =  0.50 and DL of one week, the FHS is more 

important compared to the other methods given a minimum tick-loss for all CSLs. This result 

remains unchanged for four weeks. It appears that the FHS method performs best in the 

majority of cases, followed by the CEVT and GARCH methods. Traditional methods do not 

perform as well as GARCH-based methods. 

  

(a) DL= 1 Week   ∅ = 0,50 (b) DL= 1 Week   ∅ = -0,50 

  

(c) DL= 4 Week   ∅ = 0,50 (d) DL= 4 Week   ∅ = -0,50 

 

Figure 7. Tick-Loss values in the case of a log-normal distribution for ∅ = 0.50 (a,c) and ∅ = -0.50 (b,d) and lead 

times of one week (a,b) and four weeks (c,d). 
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Figure 7 shows Tick-Loss values in the case of a lognormal distribution for ∅ =  0.50 (left) 

and ∅ =  −0.50 (right) and lead times of one week (top panel) and four weeks (bottom 

panel). 

 We can notice for all four panels when CEVT gives a higher tick loss value, we find that 

FHS provides the lowest loss, followed by GARCH and vice versa.  

 Figure 8 shows the trade-off curves in the case of a lognormal distribution for ∅ =  0.70 

(left) and ∅ =  −0.70 (right) and lead times of one week (top panel) and four weeks (bottom 

panel). This figure represents backorders versus inventory investment. Each curve in each 

panel contains four specific points corresponding to the four CSL targets (85%, 90%, 95% 

and 99%). 

  

(a) DL= 1 Week   ∅ = 0,50 (b) DL= 1 Week   ∅ = -0,50 

  

(c) DL= 4 Week   ∅ = 0,50 (d) DL= 4 Week   ∅ = -0,50 

Figure 8. Compromise curves for AR (1) in the case of a lognormal distribution for ∅ = 0.50 (a,c) and ∅ = -0.50 
(b,d) and lead times of one week (a,b) and four weeks (c,d).  

It is difficult to determine the best method, since for example in the top left panel and at the 

99% level, CEVT provides a lower level of backorders but gives a higher level of investment 
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in inventory. In contrast, the GARCH method provides a lower level of inventory investment 

but a higher level of backorders. Despite these conflicts, it's clear that GARCH-based 

methods and especially GARCH still give good results for all panels and almost all CLS 

targets.  

3.3 ANOVA test 

   To validate the superiority of the two proposed SS estimation methods, it is necessary to 

study the significance of the difference between the tick-loss of each SS estimate.  

For these reasons, the analysis of variance (ANOVA) technique evaluates the significance of 

one or more factors by comparing the means of the response variables for the different 

factors. The null hypothesis states that all population means (factor level means) are equal, 

while the alternative hypothesis states that at least one of them differs. 

    An ANOVA was performed with a continuous Tick-Loss response variable at various 

quantile values taken while accounting for factor diversity. ANOVA require data from 

approximately normally distributed populations, with equal variances between factor levels.  

    However, ANOVA procedures work quite well even if the normality assumption is not met, 

unless one or more laws are highly asymmetrical or the variances are completely different. 

   Seven methods were chosen Ses, Sim, KDE, GARCH, Roll, CEVT and FHS to calculate the 

Tick-Loss value at various CSL values taken in the order of 85%, 90%, 95% and 99%. 

   The one-week lead time was tested with sample sizes of the order of n=200 and n=1000, 

and for a four-week lead time sample sizes of the order of n =1000 and 1500 were taken. This 

is tested on two laws (normal law and lognormal law). 

Let's suppose we're going to study the effect of the following factors: delivery time, sample 

size, law and method used on the Tick- Loss value.   

The Main Effects Graph function lets you see the influence of one or more category factors on 

a continuous response. 

For example, to evaluate the results of a one-factor controlled ANOVA. We create a main 

effects plot of the mean sustainability results. 

This diagram displays data averages. After fitting a general linear model, you can use factorial 

plots to create main-effects and interaction plots using fitted means instead of data means. 



Journal of Economy & International Finance (EIF)
Vol.3pp.41-75 

Copyright -2024  
ISSN: 2961-6638 

 Figure 9 shows a line connecting the points of each variable. Observing this lin

whether or not a category variable produces a main effect, while taking into account the 

overall mean line.  

 If the line is horizontal (parallel to the X axis), no main effect is present. The average 

response is the same for all levels of the f

 If the line is not horizontal, there is a main effect. The average response is not the 

same for all levels of the factor. The steeper the slope of the line, the higher the value 

of the main effect.  

Figure 9: Plot of main effects for TL (85%); TL (90%); TL (95%); TL (99%)

As shown in Figure 9, the lognormal distribution is best suited to giving minimum Tick

values for all quantiles. 

The GARCH methods and the two proposed combined FHS and CEVT methods 

minimum Tick-Loss values for all quantiles.

For a sample size of n=1000, Tick

Loss values. 
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     The results of the ANOVA are illustrated in figure 9, which validates the simulation results 

and confirms that the two combined methods FHS and CEVT give the minimum Tick-Loss 

values and are better than the classical methods, such as the SES method, the simulation 

method, the KDE method and the GARCH method. We can also see from Figure 9 that Tick-

Loss is best when CSL = 99% and when the delay is equal to one week. The value decreases 

as CSL increases from 85% to 99% levels. Similarly, as the DL increases, the uncertainty 

increases, implying an increase in Tick-Loss values. We can also conclude that as the 

autoregressive parameter increases implying strong autocorrelation between past and actual 

demands, Tick-Loss values also increase. 

 

3.4 Case study results  

3.4.1 Case study dataset 

The dataset used in this work comes from a major manufacturer specializing in the production 

of cardboard packaging and boxes. It specifies the manufacture of customized corrugated 

packaging products, as well as paper converting and carton manufacturing. The data 

represents a series of requests with 775 weekly observations for a cardboard product used for 

product packaging, on which there is the printing and design of this product as well as the 

name of the company requesting this product. As in the case of simulated data, we used the 

SES method for point forecasts. The use of this method in an industrial context is highly 

recommended [48,49]. According to Table 3, real demand is not normally distributed and 

exhibits a phenomenon of autocorrelation of orders 1 and 2, hence the interest of modeling by 

an ARMA-GARCH model. Based on Akaike information criterion (AIC), the more 

appropriate model is AR(1) GARCH(1,1). The estimation parameters for this model are given 

in Table 3. 

Table 3. Descriptive statistics and preliminary tests 

Optimal Parameters 

        Estimate           Std. Error       t value        Pr(>|t|) 

mu       1.0583e+04  5.0609e+02    20.9123         0 

ma1     2.5679e-01   2.9854e-02       8.6015         0 

omega 1.4105e+05  3.6052e+03    39.1250          0 
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beta1   9.9853e-01   5.1000e-05   19566.2571      0 

Robust Standard Errors: 

             Estimate        Std. Error     t value        Pr(>|t|) 

mu       1.0583e+04  7.5188e+02   14.0759         0 

ma1     2.5679e-01   3.8481e-02    6.6732           0 

omega 1.4105e+05  1.4542e+04    9.6998          0 

beta1    9.9853e-01  1.1400e-04     8738.1212    0 

 

 

3.4.2 Case study Estimating safety stocks  

Two simulations are carried out with actual data for one and four weeks ahead of time. Figure 

10 shows the weekly demand for the item over time. Figure 10 shows the loss values for each 

method for real demand following the ARMA-GARCH model for one week (right) and for 

four weeks (left). When the DL case is one week, the CEVT approach reduced the loss to a 

level of 85%. The same applies when the DL is four weeks. For other CLS, almost all 

methods give the same value  

 
Figure 10: Case study: weekly demands over time 
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(a) DL =1                                                              (b)             DL=4 

Figure 11. Tick the loss values of each method for real demand following the ARMA-GARCH model for one 

week (a) and for four weeks (b). 

Figure 11 shows the residuals for each method for the actual demand following the ARMA-

GARCH model for one week (left) and four weeks (right). 

 

(a) DL =1                                                 (b)   DL=4 

Figure 12. Backorders of each method for real demand following the ARMA-GARCH model for one week (a) 

and for four weeks (b).  

In the shorter DL case and at a level of 85% we can see that the GARCH method provides a 

lower level of investment in inventory but gives higher backorders. In contrast, the CEVT 

method gives fewer backorders but a higher level of inventory investment. The result of the 

FHS method is the compromise between these methods. 

When the CSL is equal to 90%, the combination of the FHS and CEVT approaches delivers 

almost the same result. With regard to backorders, both techniques outperform the GARCH 

method, but in terms of inventory investment, this approach performs better. At the 95% 

level, the GARCH-based model methods generate the lowest backorders and inventory 

investment with CEVT improving on FHS and GARCH slightly in terms of backorders. We 

can see for CSL= 99% that the GARCH approach slightly outperforms the rest of the 

methods. In the case of longer lead times for CSL = 85%, CEVT performs better in terms of 
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backorders, and there is a slight difference in terms of investment in inventory in favor of 

FHS followed by GARCH. It should be noted that these three approaches always give better 

results for 90% and 95% SLC, with a slight difference concerning backorders or inventory 

investment. The combined FHS technique achieves the best results with the lowest backorders 

and lowest inventory investment for CSL = 99%. 

Generally speaking, such a figure indicates the good performance of GARCH-based methods 

compared with traditional approaches for each CSL objective for shorter lead times, except 

for the 99% level where GARCH performs better. For longer lead times, this achievement 

remains with the exception of the 99% level, where FHS performs best. These results 

obtained with real data correspond to those obtained with the simulated data performed in the 

previous section. This coincidence is in the sense that the GARCH method and its 

combination with simulation and EVT always perform better.  

Conclusion 

  The proposed combination improves on empirical approaches to achieve superior results 

performance, which is done in a way that is easy to implement with existing forecasting 

systems, since the only input required is historical data. This work presents the merits of such 

a combination in a supply chain context for determining safety stocks.  

However, further research needs to verify these results in other industrial datasets, for 

example on slowly evolving items with non-parametric methods. Furthermore, this work is 

limited to a simulation framework, however, other inventory control policies also need to be 

investigated.  

Another advantage of the proposed approach that is relevant to practice is that it is fully 

automatic and data-driven, and can therefore be implemented in the context of supply chain 

forecasting. Empirical techniques can improve the calculation of these SS. In particular, 

GARCH models are confronted with a time-varying heteroscedastic forecast error. EVT takes 

into account the occurrence of extreme requirements, and historical simulation need not rely 

on a fixed distribution. However, if forecast errors are heteroscedastic, do not follow a known 

distribution and extreme demand is present, then traditional approaches are unsuitable. Two 

combined empirical methods are proposed to determine SS in a more robust way and compare 

them to traditional methods published in the literature, under different supply chain 

parameters. The first method is called FHS, which combines the GARCH model with the 
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historical simulation method, and the second method is called CEVT, which combines 

GARCH with extreme value theory. To the best of our knowledge, all previous work uses one 

of these two approaches combined to calculate SS. 

Comparative analyses show the superiority of these combined methods over the Tick-Lossk 

function for the various CSL targets and for shorter and longer delays. In most cases, CEVT 

gives the lowest losses; otherwise, FHS takes its place, followed by the GARCH method. 

These results are confirmed by ANOVA. 

 

 

 

 

 

Notes The following notations are used in this manuscript: 

AIC Akaike Information Criterea 

ANOVA Analyze of Variance 

AR(1) Auto-Regressive of order 1 

ARMA AutoRegressive–Moving-Average 

ARIMA AutoRegressive—Integrated-Moving-Average 

CEVT Conditional Extreme Value Theory 

CSL Cycle Service Level 

EVT Extreme Value Theory 

FHS Filtered Historical Simulation 

GARCH Generalized Auto-Regressive Conditional Heteroskedasticity 

GEV Generalized Extreme Value 

GPD Generalized Pareto Distribution 

LT Lead Time 

DL  Délai de livraison 

iid Independent and Identically Distributed 

KDE Kernel Density Estimation 

MEF Mean Excess Function 
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MSE Mean Squared Error 

MTO Make-To-Order 

MTS Make-To-Stock 

SES Simple Exponential Smoothing 

SS Safety Stock 

TICK-LOSS Tick Loss Function 

 

 

 

 

 

 

 

 References 

1 Ali, M.M.; Boylan, J.E.; Syntetos, A.A. Forecast errors and inventory performance 

under forecast information sharing. Int. J. Forecast. 2012, 28, 830–841.  

2 Alnahhal, M.; Ahrens, D.; Salah, B. Dynamic Lead-Time Forecasting Using Machine 

Learning in a Make-to-Order Supply Chain. Appl. Sci. 2021, 11, 10105.  

3 Angelidisa, T.; Benosa, A.; Degiannakis, S. The use of GARCH models in VaR 

estimation. Stat. Methodol. 2004, 1, 105–128.  

4 Antic, S.; Djordjevic Milutinovic, L.; Lisec, A. Dynamic Discrete Inventory Control 

Model with Deterministic and Stochastic Demand in Pharmaceutical Distribution. Appl. Sci. 

2022, 12, 1536.  

5 Avanzi, B.; Bicer, I.; De Treville, S.; Trigeorgis, L. Real Options at the Interface of 

Finance and Operations: Exploiting Embedded Supply-chain Real Options to Gain 

Competitiveness. Eur. J. Financ. 2013, 19, 760–778.  



Journal of Economy & International Finance (EIF) 
Vol.3pp.41-75 

 
Copyright -2024  
ISSN: 2961-6638 

6 Axsäter, S. Inventory Control, 3rd ed.; International Series in Operations Research & 

Management Science; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; 

ISBN 9783319157290. 

7 Balkema, A.A. et de Haan, L.. Residual Life Time at Great Age. The Annals of 

Probability, 1974. 2, 792-804, https://doi.org/10.1214/aop/1176996548. 

8 Barrow, D.; Kourentzes, N. Distributions of forecasting errors of forecast 

combinations: Implications for inventory management. Int. J. Prod. Econ. 2016, 177, 24–33.  

9 Biçer, I. Dual sourcing under heavy-tailed demand: An extreme value theory 

approach. Int. J. Prod. Res. 2015, 53, 4979–4992.  

10 Bimpikis, K.; Markakis, M.G. Inventory Pooling under Heavy-Tailed Demand; 

Working Paper; Stanford University: Stanford, CA, USA, 2014. 

11 Bollerslev, T. Generalized autoregressive conditional heteroskedasticity. J. Econom. 

1986, 31, 307–327.  

12 Boute, R.N.; Disney, S.M.; Lambrecht, M.R.; Houdt, B.V. Coordinating lead times 

and safety stocks under autocorrelated demand. Eur. J. Oper. Res. 2014, 232, 52–63.  

13 Bowman AAzzalini, A. Applied Smoothing Techniques for Data Analysis: The Kernel 

Approach with S-Plus Illustrations. Int. J. Data Envel. Anal. Oper. Res. 1997, 2, 7–15. 

14 Buffa, F.P. A model for allocating limited resources when making safety-stock 

decisions. Decis. Sci. 1977, 8, 415–426.  

15 Charnes, J.M.; Marmorstein, H.; Zinn, W. Safety stock determination with serially 

correlated demand in a periodic-review inventory system. J. Oper. Res. Soc. 1995, 46, 1006–

1013.  

16 Clements, M.P.; Harvey, D.I. Combining probability forecasts. Int. J. Forecast. 2011, 

27, 208–223.  

17 De Haan, B. J. Jonas, M. Klepper, O. Krabec, J. Krol, M. S.  Olendrzy, K.. An 

atmosphere-ocean model for integrated assessment of global change. Water, Air, & Soil 

Pollution, 76(1-2), 283-318, 1994. doi: http://dx.doi.org/10.1007/BF00478343. 

18 Echaust, K.; Just, M. Value at Risk Estimation Using the GARCH-EVT Approach 

with Optimal Tail Selection. Mathematics 2020, 8, 114.  



Journal of Economy & International Finance (EIF) 
Vol.3pp.41-75 

 
Copyright -2024  
ISSN: 2961-6638 

19 Embrechts, P. Klüppelberg, C. Mikosch, T. Modelling Extremal Events for Insurance 

and Finance. Springer-Verlag, 645 , 1997. ISSN 0172-4568, ISBN 3-540-60931-8. 

20 Embrechts, P. Resnick, S. I. et Samoorodnitsky, G.. Extreme value theory as a risk 

management tool. 1998. North American Actuarial Journal 3(2), 30–41. 

21 Eppen, G.D.; Martin, R.K. Determining safety stock in the presence of stochastic lead 

time and demand. Manag. Sci. 1988, 34, 1380–1390.  

22 Fałdzinski, M.; Osinska, M.; Zalewski, W. Extreme Value Theory in Application to 

Delivery Delays. Entropy 2021, 23, 788.   

23 Fildes, R.; Goodwin, P.; Lawrence, M.; Nikolopoulos, K. Effective forecasting and 

judgmental adjustments: An empirical evaluation and strategies for improvement in supply-

chain planning. Int. J. Forecast. 2009, 25, 3–23.  

24 Fisher, R.; Tippet, L. Limiting Forms of the Frequency Distribution of the Largest or 

Smallest Member of a Sample; Cambridge Philosophical Society: Cambridge, UK, 1928; pp. 

180–190. 

25 Fotopoulos, S.; Wang, M.-C.; Rao, S.S. Safety stock determination with correlated 

demands and arbitrary lead times. Eur. J. Oper. Res. 1988, 35, 172–181.  

26 Gallego, G.; Katircioglu, K.; Ramachandran, B. Inventory Management Under Highly 

Uncertain Demand. Oper. Res. Lett. 2007, 35, 281–289.  

27 Gallego-García, S.; García-García, M. Predictive Sales and Operations Planning Based 

on a Statistical Treatment of Demand to Increase Efficiency: A Supply Chain Simulation Case 

Study. Appl. Sci. 2021, 11, 233.  

28 Gardner, E.S. Exponential Smoothing: The State of The Art-Part II. Int. J. Forecast. 

2006, 22, 637–666.  

29 Hyndman, R.J.; Koehler, A.B.; Ord, J.K.; Snyder, R.D. Forecasting with Exponential 

Smoothing: The State Space Approach; Springer: Berlin, Germany, 2008. 

30 Isengildina-Massa, O.; Irwin, S.; Good, D.L.; Massa, L. Empirical confidence 

intervals for USDA commodity price forecasts. Appl. Econ. 2011, 43, 3789–3803.  

31 Jawwad, F.; Palgrave, M. Models at Work: A Practitioner’s Guide to Risk 

Management, Global Financial Market; Springer: Berlin/Heidelberg, Germany, 2014. 



Journal of Economy & International Finance (EIF) 
Vol.3pp.41-75 

 
Copyright -2024  
ISSN: 2961-6638 

32 Lisan, S. Safety stock determination of uncertain demand and mutually dependent 

variables. Int. J. Bus. Soc. Res. 2018, 8, 1–11. 

33 Manary, M.P.; Willems, S.P.; Shihata, A.F. Correcting heterogeneous and biased 

forecast error at intel for Supply Chain Optimization. Interfaces 2009, 39, 415–427.  

34 McNeil, A. 1998. Calculating quartile risk measures for financial return series using 

extreme value theory. Working Paper, Eidgenössische Technische Hochschule Zürich. 

35 McNeil, A. 1999. Extreme value theory for risk managers. Internal Modelling and 

CADII: Qualifying and Quantifying Risk within a Financial Institution. Risk Waters Group, 

London,93–113. 

36 McNeil, A.; Frey, R. Estimation of tail-related risk measures for heteroscedastic 

financial time series: An extreme value approach. J. Empir. Financ. 2000, 7, 271–300.  

37 Meera, S. The Historical Simulation Method for Value-at-Risk: A Research Based 

Evaluation of the Industry Favorite 2018. Available online: https://ssrn.com/abstract=2042594 

(accessed on 20 March 2021). Appl. Sci. 2022, 12, 10023 24 of 25 

38 Morgan, J.P. RiskMetrics. Riskmetrics Technical Document, 4th ed.; Technology 

Report JPMorgan/Reuters; Morgan Guaranty Trust Company: New York, NY, USA, 1996. 

39 Müller, A. et al.. New aspects of electron transfer revealed by the crystal structure of a 

truncated bovine adrenodoxin, 1998. Adx(4-108). Structure 6(3):269-80. 

40 Naik, N.; Mohan, B.R. Stock Price Volatility Estimation Using Regime Switching 

Technique-Empirical Study on the Indian Stock Market. Mathematics 2021, 9, 1595.  

41 Pickands, J. Statistical Inference Using Extreme Order Statistics. 1975. Annals of 

Statistics, 3, 119-131, http://dx.doi.org/10.1214/aos/1176343003. 

42 Pictet, Gabriel, Banza, Baya. Georges, Guiella. et Christine, Ouedraogo. . Rapport 

d’évaluation : Evaluation de la stratégie de distribution à base communautaire. 1998.  Social 

and behavioral science research (SBSR). 

43 Potamianos, J.; Orman, A.; Shahani, A. Modelling for a dynamic inventory-production 

control system. Eur. J. Oper. Res. 1997, 96, 645–658.  

44 Reichhart, A.; Framinan, J.M.; Holweg, M. On the link between inventory and 

responsiveness in multi-product supply chains. Int. J. Syst. Sci. 2008, 39, 677–688.  



Journal of Economy & International Finance (EIF) 
Vol.3pp.41-75 

 
Copyright -2024  
ISSN: 2961-6638 

45 Reiss, R.-D. and Thomas, M. . Statistical Analysis of Extreme Values: with 

Applications to Insurance, Finance, Hydrology and Other Fields.1997.  2nd edn, Birkhäuser, 

Basel. 

46 Rožanec, J.M.; Kažiˇc, B.; Škrjanc, M.; Fortuna, B.; Mladeni´c, D. Automotive OEM 

Demand Forecasting: A Comparative Study of Forecasting Algorithms and Strategies. Appl. 

Sci. 2021, 11, 6787.  

47 Silverman, B.W. Density Estimation for Statistics and Data Analysis; Chapman & 

Hall: London, UK, 1986.  

48 Strijbosch, L.; Heuts, R. Modelling (s, Q) inventory systems: Parametric versus non-

parametric approximations for the lead time demand distribution. Eur. J. Oper. Res. 1992, 63, 

86–101.  

49 Syntetos, A.A.; Boylan, J.E. Demand forecasting adjustments for service-level 

achievement. IMA J. Manag. Math. 2008, 19, 175–192.  

50 Syntetos, A.A.; Boylan, J.E.; Croston, J. On the categorization of demand patterns. J. 

Oper. Res. Soc. 2005, 56, 495–503.  

51 Syntetos, A.A.; Nikolopoulos, K.; Boylan, J.E. Judging the judges through accuracy-

implication metrics: The case of inventory forecasting. Int. J. Forecast. 2010, 26, 134–143.  

52 Trapero, J.R.; Cardós, M.; Kourentzes, N. Empirical safety stock estimation based on 

Kernel and GARCH models. Omega 2018, 84, 199–211.  

53 Trapero, J.R.; Cardós, M.; Kourentzes, N. Quantile forecast optimal combination to 

enhance safety stock estimation. Int. J. Forecast. 2019, 35, 239–250.  

54 Trapero, J.R.; García, F.P.; Kourentzes, N. Impact of demand nature on the bullwhip 

effect. Bridging the gap between theoretical and empirical research. In Proceedings of the 7th 

International Conference on Management Science and Engineering Management: Focused on 

Electrical and Information Technology; Xu, J., Fry, J.A., Lev, B., Hajiyev, A., Eds.; Springer: 

Berlin/Heidelberg, Germany, 2014; Volume II, pp. 1127–1137. 

55 Trapero, J.R.; Pedregal, D.J.; Fildes, R.; Kourentzes, N. Analysis of judgmental 

adjustments in the presence of promotions. Int. J. Forecast. 2013, 29, 234–243.  



Journal of Economy & International Finance (EIF) 
Vol.3pp.41-75 

 
Copyright -2024  
ISSN: 2961-6638 

56 Wu, C.; Wang, X.; Luo, S.; Shan, J.; Wang, F. Influencing Factors Analysis of Crude 

Oil Futures Price Volatility Based on Mixed-Frequency Data. Appl. Sci. 2020, 10, 8393.  

57 Zhang, G.P.; Kline, D.M. Quarterly time-series forecasting with neural networks. 

IEEE Trans. Neural Netw. 2007, 18, 1800–1814.  


