
A web-based genetic solver for permutation flowshop using the Design 
Pattern

Lamia Trabelsi
Ecole Suprieure des Sciences Economiques
et Commercial de Tunis (ESSECT), Tunisie

Email: lamia tr2001@yahoo.fr

Talel Ladhari
College of Business, Umm Al-Qura University,

Umm Al-Qura, Saudi Arabia
Ecole Suprieure des Sciences Economiques
et Commercial de Tunis (ESSECT), Tunisie.

Email: talel ladhari2004@yahoo.fr

Abstract—In this paper, we present a genetic solver tool to
solve permutation flowshop problem. To implement the solver’s
functionalities, we introduce the use of design patterns such as the
composite, template and observer patterns to define collaboration
between the genetic operators. The proposed genetic solver will
evaluate several versions of genetic algorithm, and then, give the
best version of the selected flowshop variant using the student
test. Moreover, it allows researchers to download the executable
code of the best generated version of the genetic algorithm and
the documentation of the selected flowshop variant.

I. INTRODUCTION

Combinatorial optimization problems under permutation
property (COP-PP) are generally NP-hard. To address such
problems, researchers and practioners grew more attracted to
approximate approaches. Because of the growing interest in
such methods, in the last decade, several ready-to-use tools
have been proposed in the literature such as HeuristiticLAB
[1], E-OCEA [2], LEKIN [3] and LISA [4]. It is widely admit-
ted that ready-to-use tools in optimization help to improve the
quality of searches. However, most of them are not available
like E-OCEA [2]. Moreover, heuristics calibration tools have
not been supported by most studied cases. In [5], we have
proposed a new Research Support System for COP-PP. The
new RSS-COPP provides tools to help young researchers to
select a COP-PP variant, to solve the studied problem by a
metaheuristic algorithm and to generate the best metaheuristic
configuration leading to the best solution using calibration
tools. The Genetic solver is the core of RSS-COPP. In this
paper, we propose to enhance the functionalities of the genetic
solver for permutation flowshop by introducing the use of
the design patterns and the generation of the executable code
of the best configuration. In section II, we present the used
design patterns to deal with collaboration between the several
genetic operators. In section III, we present our new genetic
algorithm solver. Section IV concludes and proposes future
research avenues.

II. I NTEGRATING THE USE OF DESIGN PATTERNS IN THE
GENETIC SOLVER

We propose to use design patterns to enhance collaboration
among our genetic solver’s operators’ components. The used
patterns combine the composite and template patterns to deal
with the operator structure and the observer pattern to deal
with the population’s update phase.

A. Operator research structure

Empirically speaking, experimental studies showed that
metaheuristics performance depends on the use of some dif-
ferent operators and their behaviour. In fact, effectiveness of
metaheuristics depends on how to use the different available
operators. In this section, we address the problem of collabora-
tion between metaheuristics and their operators by presenting
an operator structure. In fact, we believe that two issues make
up the collaboration problem that should be addressed when
developing our genetic solver:

• How to call an operator:in most cases, operators are
invoked into a metaheuristic algorithm under certain
conditions to deal with the diversification/ intensifica-
tion paradigm. This can take place, for example, when
we apply a local search, a crossover in evolutionary
algorithms or a re-construction of metaheuristic mem-
ories.

• The operator choice: in fact, under some conditions,
the selection of one operator from an available list of
operators at run-time may improve the effectiveness
of the designed metaheuristic.

a) The operator structure description:Our proposed
operator structure rests on the combination of two patterns;
a Template pattern and a Composite pattern [6]. The use of
such patterns is justified by several reasons. In most cases,
calling research operators in metaheuristics follows a common
behaviour as invoked in our research problem statement. If
conditions and constraints are satisfied, operators will exe-
cute their main operation or else they will execute another
operation. For this reason, we propose to use the template
pattern. In fact, the template pattern is the most suitable
pattern to describe this common skeleton, letting subclasses
redefine some operational steps. However, before executing an
operator operation, a metaheuristic is faced with the problem
of the choice of the operator to be invoked. To deal with the
operator choice issue, we combine the Template Pattern with
the Composite Pattern for the following reasons:

• The Composite pattern allows operators to be grouped
to achieve the same treatment in a given context
(metaheuristic).

• The Composite pattern allows for treating the com-
posite operator (operator list) and the simple operator
uniformly. In this way, the Composite pattern hides
the complexity of the operator’s structure from the

PC
Typewriter
ISSN: 2356-5608

User1
Typewritten Text
International Journal of Computer Science, Communication & Information Technology (CSCIT)

User1
Typewritten Text

User1
Typewritten Text
pp.36-40

User1
Typewritten Text
Copyright - IPCO 2015

User1
Typewritten Text

User1
Typewritten Text
CSCIT - Vol.2 - issue1 - 2015

User1
Typewritten Text

User1
Typewritten Text

User1
Typewritten Text



2nd

Fig. 1. Generic Operator structure

Fig. 2. PseudoCode of the Template Method Construct()

metaheuristic. Metaheuristics can use a single operator
or an operator selected from a list by applying a
selection operator in the same way. Moreover, adding
a new operator or subtracting an existing one is
easier and it does not affect the functioning of the
metaheuristic.

The proposed structure is shown in figure 1. The main partic-
ipants are:

• Operator: it is an abstract class which implements
the generic template TemplateOperation() (see pseu-
docode in figure 2).

• Main Operation Interface: it presents the
Main Operation method to be implemented in
concrete operators

• ConcreteOperator: the ConcreteOperator is the spe-
cialization class of Operator.

• Composite: Composite is a subclass of Operator
and it consists of a list of Operator classes(Leaf).
If we proceed to select one operator, the compos-
ite main operation is implemented by the following
steps(figure 3): the composite selects an item accord-
ing to a selectionOperator class. The Selected Item
will call in its proper mainoperation method ().

Fig. 3. PseudoCode of the Composite MainOperation example

b) Consequences:In summary, the proposed operator
will benefit from all the advantages of the combined patterns
that we mentioned above. These mainly include:

• Hide complexity: it treats single or composite opera-
tors uniformly.

• Flexibility: Adding new operators or subtracting an
existing one is much easier at run-time.

• A Dynamic metaheuristic: The Metaheuristic will se-
lect the most suitable operator for the situation at
run-time thanks to the use of operators list in the
CompositeOperator. In the original Composite pattern,
all Leaves (concrete operators) will be executed. This
can be applied when we need all operators to be
executed. For example, to construct a population, we
use a heuristic constructive operator and a random
operator. However, when only one operator must be
invoked, the composite operator will be aggregated to
a selection operator class to select a given operator.

B. The observer pattern for the population update phase

In genetic algorithm, the best solution and the num-
ber of generation are the observers of the population class.
When the population is updated, these classes will be no-
tified about this update and will proceed by updating their
values. As shown in 4, Population, as a specialized class
of the subject class, implements the Attach() operation. In
this operation, we will add the observers to the observers
list. The Bestsolution and IterationNumber classes realize
the observer interface. By the notify() operation, the popu-
lation notifies its relative observers about its update. Sim-
ilarly, we have noted that MaxWith Out Improvement is
an observer of the best solution class. When the best so-
lution is updated, MaxWith Out Improvement will assess
the best solution value. If the best value has changed,
Max With Out Improvement sets its value at zero, other-
wise it will be incremented. In this way, the Best so-
lution inherits from the subject class its operation and
Max With Out Improvement will realize the observer inter-
face.

III. T HE GENETIC-SOLVER FOUNDATION

The genetic solver has been implemented as a first applica-
tion for permutation flowshop. More detail about its foundation
is found in [5]. In the next section, we will present the main
genetic solver interfaces.



2nd

Fig. 4. The proposed observer pattern

Fig. 5. The problem setting interface

A. Selection of a permutation flowshop variant

It is the first step in our solver. It provides an interface to
select a variant for a permutation flowshop scheduling problem
and to specify its constraints. It allows for the choice of
the generation procedures of the tested problems or instances
(figure 5).

B. Metaheuristic parametrization

After the selection of the to-be-solved variant, this step
allows the researcher to select the to-be-tested metaheuristic’s
parameters values. Figure 6 presents the initialization phase
which allows the user to define the relevant population size
and the used operator to construct the population.

C. Result Generation and code downloading

When the different metaheuristic parameters have been
selected, the solver proceeds to the solving process and to

Fig. 6. Initialization phase

finding the best result. The best result will be shown in the
result page (see figure 7 ) The result interface will provide

Fig. 7. Example of a result page

an opportunity to download the different generated files (the
binary code and the annotated bibliography). Figure 8 shows
the resulting binary code of the best generated configuration
and the execution of the file on the researcher side.

IV. CONCLUSION AND FUTURE DIRECTION

The Genetic Solver tool is a web-based application de-
veloped in order to help young researcher to find the best
version of a genetic algorithm for a COP-PP problem. As a
first application to permutation flowshop, the proposed tool
provides an interface for the selection of a flowshop problem
variant, an interface to choose the value of genetic parameters,
an interface to generate the best genetic version result and
the possibility to download the executable code of the relative
version. The operator component is enhanced by combining
composite and template patterns. Essentially, the new structure
allowed us to manipulate operators uniformly and to hide their
complexity. The Solver should integrate more sophisticated
and more powerful statistical data analysis such as ANOVA
[7] to return the best reliable parameters values of a selected
metaheuristic. In addition, tools such as fitness landscape



2nd

Fig. 8. Example of an execution of the binary code in the researcher side

and robustness analysis will be proposed for the permutation
flowshop.

REFERENCES

[1] S. Wagner, A. Beham, G. Kronberger, M. Kommenda, E. Pitzer,
M. Kofler, S. Vonolfen, S. Winkler, V. Dorfer, and M. Affenzeller,
“Heuristiclab 3.3: A unified approach to metaheuristic optimization,”
Proceedings of the VII Congreso Espanol sobre Metaheursticas, Algorit-
mos Evolutivos y Bioinspirados (MAEB 2010), Valencia, Spain., 2010.

[2] V. Tḱindt, J.-C. Billaut, J.-L. Bouquard, C. Lente, P. Martineau, E. Nron,
C. Proust, and C. Tacquard, “The e-ocea project: towards an internet
decision system for scheduling problems,”Decision Support Systems,
vol. 40, pp. 329–337, 2005.

[3] N. Asadathorn, “Scheduling of assembly type of manufacturing systems:
Algorithms and systems developments,” Ph.D. dissertation, Department
of Industrial and Manufacturing Engineering, New Jersey Institute of
Technology, Newark (USA),, 1997.

[4] H. Braesel and N. Shakhlevich, “Lisa–fit for cooperative development,,”
Sixth Workshop on Models and Algorithms for Planning and Scheduling
Problems (MAPSP’03), pp. 107 – 108, 2003.

[5] T. Lamia and L. Talel, “A new web-based solver for combinatorial opti-
mization problems under permutation property,” inModeling, Simulation
and Applied Optimization ICMSAO13 (28-30 april 2013, Hammamet),
2013.

[6] E. Gamma, R. Helm, and R. Johnson,Design Patterns. Elements of
Reusable Object-Oriented Software., 1st ed. Addison-Wesley Longman,
1995.

[7] D. Montegromy,Design and Analysis of Experiments, 5th ed. John
Wiley and Sons Inc, 2001.




