


Abstract—This paper presents a comparative study between

two algorithms of hardware/software partitioning which aim to

minimize the logic area of System on a Programmable Chip

(SOPC) while respecting a time constraint. The first algorithm

is based on the genetic algorithm (AG), the second one is our

proposed algorithm which is based on the principle of Binary

Search Trees (BST) and genetic algorithms (AG). The two

algorithms aim to define the tasks that will run on the

Hardware (HW) part and those that will run on the Software

(SW) part. They seek to find the efficient hardware/software

partition that minimize the number of tasks used by the HW

and increase the number of tasks used by the SW, in order to

balance all the design parameters and have a better trade-off

between the logic area of the application and its execution time.

Keywords—SOPC; Hardware/software partitioning;

Genetic algorithms; Binary search trees

I. INTRODUCTION

Systems on a Programmable Chip (SOPC) are
increasingly used in embedded applications. They include
multiple functions such as one or more processors, one or
more reconfigurable areas, a signal processor DSP (Digital
Signal Processor), various peripherals and memory or analog
parts. In fact they have small size and their costs are reduced
compared to the various circuits which used for performing
the same function. Many hardware and software techniques
seek to minimize a criterion (or set of criteria) given, as the
surface, the execution time and consumption for SOPC. Thus,
in this paper, we present two hardware-software partitioning
algorithms to minimize the logic area. The proposed
algorithm [1] incorporates the binary search trees into genetic
algorithm to improve the complexity and the run time of the
original genetic algorithm. The purpose of these algorithms is
to find the efficient hardware/software partition that minimize
the tasks used by the HW and increase the number of tasks
used by the SW, which aims to minimize the area. In fact the
implementation of a software module requires more flexibility
and less cost, but more executing time, while the hardware is
faster but it is more expensive and requires less time. So, we
can implement performance critical components in hardware
and noncritical components in software. This kind of
hardware/software partitioning can lead to a good tradeoff
between system performance [2] and power consumption [3].
One of the key challenges in embedded system design is how
to find an efficient hardware/software partition.

Sonia Dimassi e-mail: sdimassi@yahoo.com
Mehdi Jemai e-mail: jmehdie@gmail.com

Bouraoui Ouni e-mail: ouni_bouraoui@yahoo.fr,

Abdellatif Mtibaa e-mail: abdellatif.mtibaa@enim.rnu.tn

Laboratory of Electronic and Microelectronic, University of Monastir,

Monsatir 5000, Tunisia.

This paper is structured in five parts. After the

introduction, we give an overview of the related work; in the

third section, we present the principle of the genetic

algorithm, the binary search trees and our proposed algorithm.

The fourth section shows the experiments and their results.

Finally, we end up with a conclusion.

II. RELATED WORK

In the early 1990s, a new technique appeared for the

design of integrated circuits and systems, it was the co-design.

The software/hardware co-design became necessary to meet

the requirements of the embedded systems market. In fact, the

emergence of multimedia systems resulted in a greater

complexity of the electronics and economic competition

requires a shorter design time. In addition, the large variety of

technological targets motivates the designer to explore all

possible solutions to have an efficient software/hardware co-

design.

Traditionally, partitioning is carried out manually. The

target systems are usually presented as a task graph, which

describe the dependencies among the components of

embedded system. Today, several factors led to the need for

co-design, such as the complexity of the structure of modern

embedded systems, the requirements on cost, power, and

timing performance. Many approaches have addressed the

problem of software/hardware partitioning [4], [5], [6], [7],

[8] and they tried to find optimization methods to automate

the task of partitioning. In this context, we quote the exact

algorithms such as branch-and bound [9], integer linear

programming [10] and dynamic programming [11]. Those

algorithms have been used for partitioning problem with

small inputs successfully. Most problems of partitioning are

NP hard [12], this is why the exact algorithms may not be

suitable for large systems, because they are quite slow. To

overcome the drawback of these algorithms, researchers are

moving towards to more flexible and efficient heuristic

algorithms. Among these heuristic algorithms, we quote

simulated annealing related algorithms [13], genetic

algorithms [14], tabu search and greedy algorithms [15]. They

have been extensively used to solve partitioning problem.

Some custom heuristics, such as expert system [16] and

GCLP algorithm [17] are also appropriate for hardware-

software partitioning problem.

In this paper, we have proposed a comparative study

between two algorithms of hardware/software partitioning

which aim to minimize the logic area of SOPC while

respecting a time constraint. The two algorithms are based on

the genetic algorithms.

Optimization Algorithms for Hardware/Software Partitioning

Sonia Dimassi, Mehdi Jemai, Bouraoui Ouni and Abdellatif Mtibaa

PC
Typewriter

PC
Typewriter
ISSN: 2356-5608

mailto:sdimassi@yahoo.com
mailto:jmehdie@gmail.com
mailto:ouni_bouraoui@yahoo.fr
mailto:abdellatif.mtibaa@enim.rnu.tn
User1
Typewritten Text
International Journal of Computer Science, Communication & Information Technology (CSCIT)

User1
Typewritten Text

User1
Typewritten Text

User1
Typewritten Text
pp23-27

User1
Typewritten Text
	

User1
Typewritten Text

User1
Typewritten Text

User1
Typewritten Text

User1
Typewritten Text

User1
Typewritten Text
Copyright - IPCO 2015

User1
Typewritten Text

User1
Typewritten Text
CSCIT - Vol.2 - issue1 - 2015

User1
Typewritten Text

User1
Typewritten Text

III. BACKGROUND

A. Genetic algorithms (AG)

Genetic algorithms are a useful optimization method in

the nonlinear case. They mimic the process of natural

evolution. The basic principles of genetic algorithms were

fixed by Holland [18]. They simulate the survival-of-the-

fitness principle of nature. It stated that the most likely

individuals to survive (" best") reproduce more often and will

have more descendants. Thus, the quality of the gene pool of

the population will be increased, the most effective genes

become more frequent and the population improves. By the

same principle, a genetic algorithm starts from a population of

initial solutions, makes them breed (the best solutions are

more likely to reproduce), creating a new generation of

solutions. By repeating this cycle several times, we obtain a

population of best solutions. Genetic algorithms are generally

used to find a solution, the best solution after a certain

number of generations.

This is the main iteration body of a genetic algorithm:

1. Evaluate the quality (fitness) of individuals and their

chances of survival.

2. Select individuals for reproduction.

3. Perform reproduction.

4. Replace the old population with the new population.

This iteration is repeated as many times as required. The

evaluation of the quality (fitness) of an individual can

illustrate with a numerical value, the quality of the genes that

make up the individual. More the quality of an individual is

higher, more it will have chance to be selected for

reproduction. The reproduction is made by crossing two

individuals. Indeed, we applied generic operators to the two

selected individuals, usually cross-over and mutation. The

reproduction provides two children (offspring) that are placed

in the new population. Reproduction is repeated until we have

completed the new population (the population size should

remain constant). Then, we replace the old population by the

new, and the process is repeated according to the needed

number of generations. Finally, the algorithm will return the

best individual of the latest generation as the solution of the

problem.

B. Binary search trees (BST)

The trees are mainly the data structure used to store

ordered data. They are the largest non-linear structure

involved in the computer science. This structure can be

adapted to the natural representation of organized and

homogeneous information, and it has a great speed and a

handling convenience. The trees are used in many computing

areas, such as compilation (syntax trees to represent

expressions or possible productions of language), imaging

(quaternary trees), algorithmic (for example it is the support of

sorting methods or management information in tables), or in

the fields of artificial intelligence (game trees, decision trees,

resolution trees).

The binary trees are used to storage and retrieve

information. They are interesting because they optimize the

access time to information. Our purpose behind using Binary

Search Trees (BST) is to reduce our search space and to have

an optimized data access time. In computer science, a BST,

sometimes called an ordered or sorted binary tree, it is a

node-based binary tree data structure which has the following

properties:

1. Hierarchical data structure with a single reference to root

node.

2. Each node has at most two child nodes (a left and a right

child).

3. Nodes are organized by the Binary Search Property:

 Every node is ordered by some key data field(s)

 For every node in the tree, its key is greater than its

left child’s key and less than its right child’s key.

Otherwise, the label of each node is greater than any node

in its left sub-tree and less than each node of the right sub-

tree.

C- Proposed algorithm

As mentioned, the proposed algorithm is based on the

genetic algorithm and the binary search trees. To reduce the

logic area on SOPC, it assigns the small modules to the Left

Sub-Tree (LST) and large modules to the Right Sub-Tree

(RST). In this way, we will have a hardware/software

partitioning that reduce the area, in fact, the left sub-tree is

assigned to the hardware part and the right sub-tree is

assigned to the software part of architecture. To improve the

hardware/software partitioning obtained, the genetic

algorithm will be applied on the left sub-tree or on the right

sub-tree according to the time constraint, instead of

performing the search in the whole binary tree. The proposed

algorithm aim to find the tasks that will migrate from the

software part to the hardware part of architecture or to the

contrary, to get a best hardware/software partitioning. The

detail of our proposed algorithm is shown in Fig.1.

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Node_%28computer_science%29
http://en.wikipedia.org/wiki/Binary_tree

Figure 1. Main procedures for the proposed algorithm

IV. EXPERIMENTS AND RESULTS

To confirm our approach, we have implemented the 16-

DCT task graph on FPGA Xilinx Virtex®-5. The Xilinx

Virtex®5 development kit enables a high performance

embedded design in Xilinx FPGAs.

In our approach, the software resource is the PowerPC and

the hardware resources are configurable logic blocs (CLBs).

Hence, to compute the parameters of each node and to access

to the PowerPC, we have used Xilinx ISE tool and Xilinx EDK

tool. These Xilinx design tools provide resources and timing

report incorporates timing delay and resources to provide a

comprehensive area and timing summary of the design. Our

algorithm has been written in JAVA language and executed

under Windows-7 on Acer-PC (Intel Core 2 Duo T5500; 1.66

GHz; 1GB of RAM). In order to demonstrate the effectiveness

of the proposed algorithm compared to genetic algorithm. The

simulation results are presented in table 1.

TABLE 1: DESIGN RESULTS

Algorithm
Run time

(ms)

Latency

(ns)

Area

(Slice)

Proposed

algorithm
766 2664 2202

Genetic

algorithm
40375 2928 2274

To evaluate the design results shown in table 1, we have

introduced the following metric α

 (1)

TArea: all nodes of the graph are implemented to the

hardware part of the architecture.

GArea: the logic area consumed by the graph

L: the whole latency of the graph

Therefore, based on the above equation, a partitioning

algorithm is classified to be good if it decreases the value of α.

TABLE 2: DESIGN RESULTS

Proposed

algorithm

Genetic

algorithm

α 1.153 1.308

The above design results in table 2 show that our algorithm

is the best one in terms of α value. Indeed, our algorithm

provides a gain reaching 11.85 % compared to the Genetic

algorithm.

Our proposed algorithm has reduced the search space to m

nodes (m, is the number of nodes in the right sub-tree or the

left sub-tree) according to the execution time of the

application, while the genetic algorithm uses all the nodes of

the studied graph (n nodes). Indeed, the number of reduced

nodes leads to a reduction of execution time of the algorithm.

In fact, our algorithm is faster 52 times than the genetic

algorithm

V. CONCLUSION

Contrary to a large number of optimization methods, the

genetic algorithms operate on a population of potential

solutions allowing it to explore several areas of space

configurations at the same time and they avoid focusing on a

local extremum. Based on these characteristics, we proposed

an algorithm that incorporates the binary search trees into

genetic algorithm to address the problem of software/hardware

partitioning, in order to minimize the logic area of System on a

Programmable. In this paper we have made a comparative

study between our proposed algorithm and the genetic

algorithm. Compared to the genetic algorithm, the proposed

algorithm reduces the search space, in fact, instead of

performing the search in the whole binary trees, it will be

done, on the left sub-tree or on the right sub-tree according to

the time constraint. As a result, the run time is reduced,

because the genetic algorithms consume a lot of computing

time. Our Proposed algorithm is faster 52 times than the

genetic algorithm, and it has provided the better design results

in term of the logic area. Eventually, we can admit that the

proposed algorithm improves the complexity and the run time

of the original genetic algorithm.

REFERENCES

[1] Sonia Dimassi, Mehdi Jemai, Bouraoui Ouni and Abdellatif

Mtibaa,"Hardware-software partitioning algorithm based on Binary
Search Trees and Genetic Algorithm to optimize logic area for SOPC",

Published in Journal of Theoretical and Applied Information

Technology (JATIT), Vol.66, No.3, August 2014.
[2] D. Gajski, F. Vahid, S. Narayan, and J. Gong, ―Specsyn: An environment

supporting the specify-explore-refine paradigm for hardware/software

http://www.praiseworthyprize.org/jsm/index.php?journal=irecos&page=issue&op=view&path%5B%5D=54

system design,‖ IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 6, no. 1, pp. 84–100, 1998.
[3] J. Henkel, ―A low power hardware/software partitioning approach for

core-based embedded systems,‖ in Proceedings of the 36th annual

ACM/IEEE Design Automation Conference. ACM, 1999, pp. 122–
127.

[4] Bouraoui Ouni, Ramzi Ayadi and Abdellatif Mtibaa, "Combining

Temporal Partitioning and Temporal Placement Techniques for
Communication Cost Improvement" Advances in Engineering

Software, Elsevier Publishers, Volume 42, no 7, July 2011, pp : 444-

451.
[5] Bouraoui Ouni. , Ramzi Ayadi, and Abdellatif Mtibaa. "Temporal

partitioning of data flow graph for dynamically reconfigurable

architecture", Journal of Systems Architecture, vol 57, no 8,

September 2011, pp 790-798

[6] Bouraoui Ouni and Abdellatif Mtibaa, "Optimal placement of modules

on partially reconfigurable device for reconfiguration time
improvement", Microelectronics International published by Emerald

Group Publishing Limited, volume 29, Issue 2, 2012, Pages 101-107

[7] Ramzi Ayadi, Bouraoui Ouni and Abdellatif Mtibaa, "A Partitioning
Methodology that Optimizes the Communication Cost for

Recongurable Computing Systems" International Journal of

Automation and Computing (IJAC), Institute of Automation and
Springer-Verlag Publishers, Volume 9, N° 3, June 2012, pp 280-287.

[8] Mehdi Jemai, Sonia Dimassi, Bouraoui Ouni and Abdellatif Mtibaa,

"Optimization of logic area for System on Programmable Chip based
on hardware-software partitioning", International Conference on

Embedded Systems and Applications (ICESA) Hammamet-

Tunisia,March 2014.
[9] K. Chatha and R. Vemuri, ―Hardware-software partitioning and pipelined

scheduling of transformative applications,‖ IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 10, no. 3, pp. 193–208,
2002.

[10] S. Banerjee, E. Bozorgzadeh, and N. D. Dutt, ―Integrating physical

constraints in hw-sw partitioning for architectures with partial dynamic
reconfiguration,‖ IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 14, no. 11, pp. 1189 –1202, nov. 2006.

[11] J. Wu and T. Srikanthan, ―Low-complex dynamic programming
algorithm for hardware/software partitioning,‖ Information processing

letters, vol. 98, no. 2, pp. 41–46, 2006.

[12] A.Kalavade, ―System-level codesign of mixed hardwaresoftware
systems,‖ PHDTHESIS, University of California, Berkeley, 1995.

[13] J. Henkel and R. Ernst, ―An approach to automated hardware/ software

partitioning using a flexible granularity that is driven by high-level
estimation techniques,‖ IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 9, no. 2, pp. 273–289, 2001.

[14] R. Dick and N. Jha, ―Mogac: a multiobjective genetic algorithm for
hardware-software cosynthesis of distributed embedded systems,‖

IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 17, no. 10, pp. 920–935, 1998.
[15] P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli, ―System level

hardware/software partitioning based on simulated annealing and tabu
search,‖ Design Automation for Embedded Systems, vol. 2, no. 1, pp.

5–32, 1997.

[16] M. L´opez-Vallejo and J. L´opez, ―On the hardware-software
partitioning problem: System modeling and partitioning techniques,‖

ACM Transactions on Design Automation of Electronic Systems

(TODAES), vol. 8, no. 3, pp. 269–297, 2003.
[17] A. Kalavade and P. Subrahmanyam, ―Hardware/software partitioning

for multifunction systems,‖ IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 17, no. 9, pp. 819–837,
1998.

[18] J. Holland, ―Genetic algorithms,‖ Scientific American, vol.267, no. 1,

pp. 66–72, 1992.

http://www.scopus.com/authid/detail.url?authorId=55973952500&eid=2-s2.0-79960655112
http://www.scopus.com/authid/detail.url?authorId=37071919800&eid=2-s2.0-79960655112
http://www.scopus.com/authid/detail.url?authorId=55913688000&eid=2-s2.0-79960655112
http://www.scopus.com/source/sourceInfo.url?sourceId=12398&origin=recordpage
http://www.wceecs.com/
http://www.wceecs.com/

