
A First Approach to Malware Detection using

Residual Networks
Hoda El Merabet

Faculty of Science, Abdelmalek Essaadi University

B.P. 2117 Quartier M’hanech II, Av. Palestine, Tetouan, Morocco

helmerabet@uae.ac.ma

Abstract— The internet is omnipresent in our daily lives. As a

result, potential attacks and compromises become possible to

illegally access our data. With a focus on keeping our machines

safe, research on malware detection field is strongly active,

especially with the help of machine learning. Machine learning

has been evolved into this field in the last two decades. Support

Vector Machines SVMs, random forests, logistic regression and

deep artificial neural networks ANNs were employed in different

combinations in order to get high performance results, and thus

to correctly identify malware from benign files. Since Windows

machines are the most popular in the area of desktop and laptop

computers, we are building our study upon the portable

executable (PE) format; the file format for executables of

Windows operating systems. Accordingly, features were

extracted from the PE header fields to be used as inputs to our

model. Several researches considered dealing with executable

files as images a good way to benefit from the advantages of

Convolutional Neural Networks CNNs to detect malware. In our

study, we are using a relatively new class of CNNs, namely

Residual Networks ResNets. These are CNNs based on shortcut

connections for feature reuse. The extracted PE features were

converted to byte values, afterwards fed to the ResNet model as

greyscale images. The obtained results were reasonably

satisfying.

Keywords—Malware Classification; Malware Detection;

Machine Learning; Artificial Neural Networks; Deep Learning;

Convolutional Neural Networks; Residual Networks

I. INTRODUCTION

Recognition and identification of malware is an active area

because of the huge number of malicious software daily

registered. Every day, the AV-TEST Institute registers over

350,000 new malicious programs (malware) and potentially

unwanted applications (PUA) [1]. There are three approaches

to identify malicious from legitimate files. The first one is the

static approach. It relies on the extraction of signatures, which

are values present in the files, or values that should be

calculated using a hash function for instance, like the MD5

message-digest algorithm. Even though this approach excels

at blocking known malware, it would never detect new ones

as they use novel signatures. The second approach is the

dynamic approach. This one is based on the execution of the

files on a virtual environment or a sandbox to be able to detect

the suspicious activities and visualize the behaviour of each

file. This approach requires a long period of scanning, and a

high consumption of resources. The third approach is the

heuristic approach based on machine learning models, which

has proven its success the last two decades. It can rely on

static features, on dynamic features, or on both of them.

There are a lot of factors that influence the success of a

model, particularly the types of extracted features, the feature

selection techniques, and the used machine learning

algorithms [2]. In this paper, we are using PE features as

inputs to our model and a residual neural network model as

classification technique. Residual networks are a new form of

deep learning models introduced the last four years, initially

for image recognition.

Deep learning models suffer from the well-known

vanishing gradient problem. This problem gets bigger when

using a large number of layers. The gradients become too

small hence the training doesn’t happen efficiently. The

apparition of residual networks ResNets for image recognition

[8, 13] was innovative for providing a new solution to this

problem. This kind of networks was thereafter used in Natural

Language Processing NLP [14], in morphological reinflection

[15], in language identification [16], in semantic tagging and

Part-of-Speech POS tagging [17], and in single image super

resolution [18]. Inspired by the great results obtained by these

studies, ResNets were used in our study for the first time for

malware detection, to the best of our knowledge.

II. RELATED WORK ON MALWARE DETECTION

The ability of machine learning models to learn from

training data, and subsequently to generalize to previously

unseen data is a major reason to have an increasingly number

of researches interested in this area. Each research relies on

different features and different classification techniques.

In [3], each sample from the training dataset was executed

within a virtual environment to capture dynamic behaviour of

it. The model was then built upon 300 vectors of nine

collected machine activity metrics. These metrics are: CPU

user use, CPU system use, RAM use, SWAP use, received

packets, received bytes, sent packets, sent bytes, and the

number of running processes. These metrics were afterwards

transformed to 300 vectors of x-y coordinates using Self

Organizing Feature Maps SOFMs. The dataset was constituted

of 1188 PE files; 594 malicious and 594 benign. Half the files

were used for training and the other half for testing. After

registering the machine activity metrics each second in a 5-

minutes time window, the researchers ended by collecting a

dataset of 345,000 observations. For comparison, two machine

learning classifiers were used in two separate experiments.

Random forest was used in a first experiment, and in a second

PC2
Texte tapé à la machine
International Journal of Computer Science, Communication & Information Technology (CSCIT)Vol.8 pp. 17-22

PC2
Texte tapé à la machine
Copyright 2019ISSN 1737-930X

one, logistic regression was used. The best accuracy, namely

86.70%, was obtained using logistic regression.

As for [4], API calls and operating system resource

instances were used to identify API call graphs. These graphs

were used as input features for the designed deep learning

model. Multiple layers of Sparse Auto Encoders SAEs were

employed to reduce the size of the original extracted features,

followed by a Decision Tree classifier. The training dataset

was constituted of 1760 samples, where 880 files were

malicious and 880 were benign files. 10-fold cross-validation

technique was used for training and testing. The achieved

detection precision was 98.6%. In this paper, we are

comparing the results of the different researches according to

the accuracy metric. However, only the precision rate was

published for [4].

The features used in [9] were n-gram system call sequences.

A combination of two models was used, giving two pairs of

probability values for each sample. Thereafter, these

probabilities were compared to a threshold to get the final

prediction result. The first model was the Long-Short-Term

Memory LSTM. Here, the information gain technique was

employed as feature selection technique, in order to remove

redundant sub-sequences. Afterward, the LSTM model was

fed, followed by a Max-Pooling layer then by a logistic

regression classifier. The second model was the Random

Forest model. At this point, the input features were API

statistical features, obtained from the association of two API

calls, based on the comparison of the two API call sequences

hashes. Initially, the experiments were conducted using each

model separately. The results got by combining both models

were better. The obtained accuracy using the combination of

both models was 95.7%.

Since CNNs demonstrated high performances in image

recognition, numerous malware detection researches took

advantage of this type of algorithms. The work of [5] relied on

a dynamic approach. The samples were executed in virtual

machines, then process performance metrics were extracted.

Each sample was represented as an image, the rows contained

the executed processes, and the columns contained the 28

extracted features per process like the process status, the CPU

usage percent, the number of read requests, the number of

write requests, the number of read bytes, the number of

written bytes, etc. CNNs were employed to classify the

samples. An accuracy of 90% was obtained on the test dataset.

In [6], the raw bytes of each executable file were converted

using an embedding layer, in order to be used as input features.

Through this embedding layer, each byte was mapped to a

fixed length feature vector. They avoided to use raw byte

values, as they can lead to the interpretation that certain byte

values are intrinsically closer to each other than other byte

values, which is absolutely false as byte value meaning

depends on the context. The model was constructed from

CNNs and Recurrent Neural Networks RNNs followed by a

fully connected layer. A dataset of 400,000 files split evenly

between benign and malicious files was used for training. And

a distinct testing set of 77,349 files was used for the final test

phase. An accuracy of 90.90% was obtained.

III. DEEP RESIDUAL LEARNING

A. Strengthening Vision with CNNs

A convolution operation is an element wise matrix

multiplication operation. CNNs are based on convolutions

between the input images and a number of filters. These filters

are not predefined, they are learned during the training process.

After this operation, new images called feature maps are

obtained. Each convolution, or the application of each filter in

other words, will change the image in such a way that

particular features get emphasized. Next to convolutions,

pooling can also be used within CNNs. It is a way of

compressing the convolved images, in order to reduce the

number of parameters and computations in the network.

Because of the ability of a CNN to learn the existence of a

feature regardless of its position, and since the different parts

of a PE executable file can be placed anywhere within the file,

as observed for instance by Barker et al. in [6], CNNs have

been introduced to malware detection field in plentiful

researches.

B. Problem with Deep Neural Networks

The intuition behind deep learning is that adding more

layers makes the model learning more complex features.

Accordingly, it becomes able to make more accurate decisions.

However, [8] showed that continuing to go deeper affects

negatively the performance of a traditional CNN model. They

conducted experiments on the CIFAR-10 dataset [10] to

classify images. Fig. 1, represented by the experiments of [8]

depicts the performance decreasing going from a model with

20 layers to a model with 56 layers.

Fig. 1 Training error (left) and test error (right) on CIFAR-10 with 20-layer

and 56-layer plain networks. The deeper network has higher training error and

thus higher test error [8]

This problem of performance degradation can be returned

to a very known problem, namely the vanishing gradient

problem. The gradients become negligible when they pass

from the end to the beginning of the model through the high

number of layers. Furthermore, the problem can be caused by

the loss of input information when it travels from the

beginning of the network to its end. In order to lighten this

problem while training very deep neural networks, the authors

have introduced residual blocks. These blocks are based on

feature reuse.

C. Residual Blocks

A residual block is a block of layers that adds the input to

the output, before continuing to feed a new block of layers. It

can be constituted of numerous convolutional layers, generally

two or three but can be more.

PC2
Texte tapé à la machine
Copyright 2019ISSN 1737-930X

PC2
Texte tapé à la machine
International Journal of Computer Science, Communication & Information Technology (CSCIT)Vol.8 pp. 17-22

Let us consider x the input to a few stacked layers of a deep

machine learning model, and F(x) the output of it. If we

assume that x and F(x) have the same dimensions, then a

residual block can be defined by equation (1):

y = F(x) + x (1)

Fig. 2 shows the building block of residual learning as

given by [8].

Fig. 2 A residual block [8]

The operation F + x is performed by a shortcut connection

and element-wise addition [8]. It introduces neither extra

parameters nor calculation complication.

If x and F(x) don’t have the same dimensions, the identity

mapping x can be multiplied by a linear projection just to

match dimensions, as represented by equation (2):

y = F(x, {Wi}) + Ws x (2)

Where: Wi are the weights to be learned in the stacked

layers of the residual block

Ws is the matrix used to match dimensions

Residual networks are constituted by stacking consecutive

residual blocks together. As we just saw above, they are based

on shortcut connections to propagate and reuse information

over the layers of the model. This helps in mitigating the

effect of the vanishing gradient problem, allowing us to build

deeper networks with higher performances.

D. Residual Networks in Image Recognition

In [8], ImageNet 2012 classification dataset [11] was used

to test the efficiency of a residual network architecture. It

consists of 1000 classes of images. The results are depicted in

Fig. 3. In the left, training and test errors are drawn for two

plain networks, without residual blocks. The first one is

constituted of 18 layers and the second one of 34 layers. In the

right, training and test errors are drawn for two residual

networks, one model with 18 layers and the other one with 34

layers.

Fig. 3 Training on ImageNet. Thin curves denote training error, and bold

curves denote validation error of the center crops. Left: plain networks of 18

and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual

networks have no extra parameter compared to their plain counterparts [8]

In Fig. 3, we can clearly see that the validation error of the

34 layers-residual network is the lowest one among the

validation errors of all other networks. Both residual networks

in this figure, have no extra parameters compared to their

plain counterparts.

The study of [8] demonstrated that by increasing the depth

of the network, and using residual networks, better validation

accuracies can be obtained. We can conclude from this, that

adding more residual blocks to the network helps with

generalization.

IV. IMPLEMENTATION AND EXPERIMENT RESULTS

A. Dataset Used

We empirically demonstrate the effectiveness of the

residual network built in our study on the EMBER dataset [7].

It consists of 900K training samples (300K malicious, 300K

benign, and 300K unlabelled) where only the benign and the

malicious ones were utilized in our experiments. In addition to

the training samples, it contains 200K test samples (100K

malicious and 100K benign). The training of our model was

done on 80% of the 600K samples training dataset, the

remaining 20% of the data were used for the validation at the

end of each epoch. The 200K test samples were totally kept to

the end of the training in order to evaluate the model on

previously unseen data. The employed features are values

extracted from the PE header fields. These features consist of

information describing the executable file, like the virtual size

of the file, the virtual address where the program will start the

execution, API import and export functions, the number and

size of different sections in the file, etc. As shown in [2],

various researches adopt the PE features for building their

models obtaining high accuracy rates. Fig. 4 shows an

example of the extracted features from an executable in our

study as given by [7].

B. Methodology

The vectorizing of raw features is provided by the EMBER

authors [7], so each sample is represented as a feature vector

of dimension 2351. A residual network needs images as inputs.

To implement our malware detection model, we chose to

represent each sample as a greyscale image of 50 by 50, so we

padded each vector by 149 zeros, then we reshaped it to an

array of 50 by 50 to feed the model.

CNNs were largely used for malware detection. As far as

we know, residual networks were not yet employed in this

field. Motivated by the success of these networks in image

classification primarily, then in many other fields, we were

convinced that they will give favourable results in the

classification of legitimate and malicious files.

Various implementations were tested in our experiments.

After comparison, we retained the implementation described

below.

We chose to add noise to the input layer through a Gaussian

noise layer. This layer has a regularizing impact and helps to

lessen overfitting. Then, a 2D convolutional layer is added. 64

filters are used, which means trying to detect 64 different

features.

PC2
Texte tapé à la machine
Copyright 2019ISSN 1737-930X

PC2
Texte tapé à la machine
International Journal of Computer Science, Communication & Information Technology (CSCIT)Vol.8 pp. 17-22

"sha256": "000185977be72c8b007ac347b73ceb1ba3e5e4dae4fe98d4f2ea92250f7f580e",

"appeared": "2017-01",

"label": -1,

"general": {

"file_size": 33334,

"vsize": 45056,

"has_debug": 0,

"exports": 0,

"imports": 41,

"has_relocations": 1,

"has_resources": 0,

"has_signature": 0,

"has_tls": 0,

"symbols": 0

},

"header": {

"coff": {

"timestamp": 1365446976,

"machine": "I386",

"characteristics": ["LARGE_ADDRESS_AWARE", ..., "EXECUTABLE_IMAGE"]

},

"optional": {

"subsystem": "WINDOWS_CUI",

"dll_characteristics": ["DYNAMIC_BASE", ..., "TERMINAL_SERVER_AWARE"],

"magic": "PE32",

"major_image_version": 1,

"minor_image_version": 2,

"major_linker_version": 11,

"minor_linker_version": 0,

"major_operating_system_version": 6,

"minor_operating_system_version": 0,

"major_subsystem_version": 6,

"minor_subsystem_version": 0,

"sizeof_code": 3584,

"sizeof_headers": 1024,

"sizeof_heap_commit": 4096

}

},

"imports": {

"KERNEL32.dll": ["GetTickCount"],

...

},

"exports": []

"section": {

"entry": ".text",

"sections": [

{

"name": ".text",

"size": 3584,

"entropy": 6.368472139761825,

"vsize": 3270,

"props": ["CNT_CODE", "MEM_EXECUTE", "MEM_READ"]

},

...

]

},

"histogram": [3818, 155, ..., 377],

"byteentropy": [0, 0, ... 2943],

"strings": {

"numstrings": 170,

"avlength": 8.170588235294117,

"printabledist": [15, ... 6],

"printables": 1389,

"entropy": 6.259255409240723,

"paths": 0,

"urls": 0,

"registry": 0,

"MZ": 1

},

}
Fig. 4 Raw features extracted from a PE file [7]

After that, a Batch Normalization layer is added. As

explained by [12], a batch normalization consists of

performing the normalization for each training mini-batch.

This procedure accelerates the training of deep neural

networks.

The chosen activation function is the Rectified Linear Unit

ReLU. The role of each activation function is to do a non-

linear transformation to the input data, making the model

qualified to achieve more complex tasks. ReLu is the more

popular activation function nowadays. As demonstrated by

[19], the main benefit of ReLu is the non-saturation of its

gradients, which enormously hasten the convergence of

stochastic gradient descent in comparison with the sigmoid

and the tanh functions.

Next, a max pooling layer is introduced. This layer has no

parameters to learn, it takes a region of the convolved image

of a fixed filter size, in our case, this region has a dimension

of 3 * 3, then selects the maximum value of its different

values; the 9 values in our case. The biggest role of this layer

is to continuously lessen the spatial size of the feature maps,

as said earlier, and consequently to reduce the amount of

computations on the network, while preserving the most

important information.

Subsequently, two residual blocks are added. Each residual

block consists of two convolutional layers with batch

normalization and a ReLU activation function, followed by

adding a shortcut connection to the output of these two

convolutional layers, then passing the result again through a

ReLU activation. Finally, since we are involving binary

decisions, either malicious or benign class, we are using

binary cross-entropy as loss function.

C. Experiments and Evaluation Results

All the experiments in this paper were conducted on a

laptop computer with Intel® Core (TM) i7-6500U @ 2.50

GHz, 2.59 GHz, and 16 GB of RAM.

Based on the dataset described in Section IV.A, we

evaluated the experiments in two perspectives; a residual

network model without dropout regularization and a residual

network model with dropout regularization.

After several attempts of parameter tuning, for each model

type, the best results were obtained using a learning rate of

0.00007, a batch size of 256 and 64 filters for the different

convolutional layers. We trained each model for 80 epochs.

The figures 5 and 6 represent the training and validation

loss and accuracy obtained with both models, without and

with dropout regularization. After a certain epoch, the model

continues to learn peculiarities of the training data and is not

any more able to generalize well to previously unseen data.

Therefore, we had to opt for an early stopping approach in

order to get the best test accuracy. Our code saved the trained

model at the end of each epoch, in order to be able to adopt

the most fitting one. The epoch to stop at is different from a

model to another.

For the residual network model without dropout

regularization, the best validation accuracy was obtained at

epoch 72, namely 93%, however the test of the saved model at

this epoch on the 200,000 previously unseen test samples,

PC2
Texte tapé à la machine
Copyright 2019ISSN 1737-930X

PC2
Texte tapé à la machine
International Journal of Computer Science, Communication & Information Technology (CSCIT)Vol.8 pp. 17-22

lessened enormously, resulting in 83.10% as test accuracy.

The second-best validation accuracy was observed at epoch 27,

namely 91.01%. Here we obtained a test accuracy of 88.30%.

Therefore, we retained the model saved at epoch 27. The

accuracy decreased by 2.71% from validation to testing data.

This decrease is a normal behavior of machine learning

models as seen on [2], as the models are exposed in this final

phase to totally new data.

As for our residual network model with dropout

regularization, the best validation accuracy was obtained at

epoch 79, namely 92.29%. At this epoch, the saved model

presented the best test accuracy, that is 90.38%. Here we have

an accuracy decrease of 1.91%.

Fig. 5 Train and validation loss and accuracy obtained with our ResNet model

without dropout regularization

Fig. 6 Train and validation loss and accuracy obtained with our ResNet model

with dropout regularization

The final test accuracies of both models are shown in

Table1.

TABLE I

TEST ACCURACIES ON EMBER TEST DATASET FOR BOTH MODELS

 Test Accuracy

Without Dropout 88.30%
With Dropout 90.38%

We see evidently that the residual network model with

dropout regularization performs better giving us an accuracy

of 90.38%. This accuracy is even better than some other

previous researches on malware detection using machine

learning as shown in Table 2.

TABLE II

COMPARISON OF OUR MODEL WITH SOME PREVIOUS RESEARCHES

 Accuracy

 Random forest [3] 86.70%
CNNs [5] 90%

Our ResNet model 90.38%

V. CONCLUSIONS

The use of residual networks in malware detection is new

as far as we know. The model built in this paper represents a

first approach using these powerful networks in this field. The

obtained results were satisfying as shown. However, they can

be much more improved in the future with more hyper-

parameters tuning, with the employment of feature selection

techniques, and with adopting other types of features in

addition to PE features. Implementing deeper residual

networks may also help on getting better results. However, the

training of these deeper networks can be painfully time-

consuming and needs more powerful machines with GPUs

and larger RAM sizes.

REFERENCES

[1] The AV-TEST website. The Independent IT Security Institute. [Online].

Available: https://www.av-test.org/en/statistics/malware/

[2] H. El Merabet and A. Hajraoui, “A survey of malware detection

techniques based on machine learning,” International Journal of

Advanced Computer Science and Applications (IJACSA), vol. 10, pp.

366–373, Jan. 2019.

[3] P. Burnap, R. French, F.Turner and K. Jones. “Malware classification

using self-organizing feature maps and machine activity data,” Journal

Computers and Security, vol. 73, pp. 399–410, 2018.

[4] F. Xiao, Z. Lin, Y. Sun and Y. Ma. “Malware detection based on deep

learning behavior graphs,” Mathematical Problems in Engineering, vol.

2019, Feb 2019.

[5] M. Abdelsalam, R. Krishnan, Y. Huang and R. Sandhu. “Malware

detection in cloud infrastructures using convolutional neural

networks,” in Proc. 11th IEEE Conference on Cloud Computing

(CLOUD), San Francisco, CA, Jul 2-7 2018.

[6] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro and C.

Nicholas. “Malware detection by eating a whole exe,” AAAI Workshop

on Artificial Intelligence for Cyber Security, 2018.

[7] H. Anderson and P. Roth. “EMBER: An open dataset for training static

PE malware machine learning models,” in ArXiv e-prints. Apr 2018.

[8] K. He, X. Zhang, S. Ren and J. Sun. “Deep residual learning for image

recognition,” Computer Vision and Pattern Recognition (CVPR), 2016.

[9] L. Xiaofeng, Z. Xiao, J. FangshuoY. Shengwei and S. Jing. “ASSCA:

API based sequence and statistics features combined malware detection

architecture” in Procedia Computer Science 129, Jan 2018, pp 248-256.

PC2
Texte tapé à la machine
Copyright 2019ISSN 1737-930X

PC2
Texte tapé à la machine
International Journal of Computer Science, Communication & Information Technology (CSCIT)Vol.8 pp. 17-22

[10] A. Krizhevsky. “Learning multiple layers of features from tiny

images,” Tech Report, 2009.

[11] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z.

Huang, A. Karpathy, A. Khosla, M. Bernstein et al. “Imagenet large

scale visual recognition challenge,” in ArXiv:1409.0575, 2014.

[12] S. Ioffe and C. Szegedy. “Batch normalization: Accelerating deep

network training by reducing internal covariate shift,” in CoRR, vol.

1502.03167, 2015.

[13] K. He, X. Zhang, S. Ren and J. Sun. “Identity mappings in deep

residual networks,” in ArXiv preprint arXiv:1603.05027, 2016.

[14] A. Conneau, H. Schwenk, L. Barrault and Y. Lecun. “Very deep

convolutional networks for natural language processing,” in ArXiv

preprint, arXiv:1606.01781, 2016.

[15] R. Ostling. “Morphological reinflection with convolutional neural

networks,” in Proc. Of the 2016 Meeting of SIGMORPHON, Berlin,

Germany. Association for Computational Linguistics.

[16] J. Bjerva. “Byte based language identification with deep convolutional

networks,” in ArXiv preprint arXiv:1609.09004, 2016.

[17] J. Bjerva, B. Plank and J. Bos. “Semantic tagging with deep residual

networks,” in Proc. Of COLING, Osaka, Japan, Dec. 2016.

[18] B. Lim, S. Son, H. Kim, S. Nah and K. M. Lee. “Enhanced deep

residual networks for single image super-resolution,” in the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR)

Workshops, 2017, pp. 136-144.

[19] A. Krizhevsky, I. Sutskever and G. E. Hinton. “ImageNet classification

with deep convolutional neural networks,” Proc. NIPS’12 Proceedings

of the 25th International Conference on Neural Information Processing

Systems, vol. 1, pp. 1097-1105, Dec. 2012.

PC2
Texte tapé à la machine
Copyright 2019ISSN 1737-930X

PC2
Texte tapé à la machine
International Journal of Computer Science, Communication & Information Technology (CSCIT)Vol.8 pp. 17-22

