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Abstract— The internet is omnipresent in our daily lives. As a 

result, potential attacks and compromises become possible to 

illegally access our data. With a focus on keeping our machines 

safe, research on malware detection field is strongly active, 

especially with the help of machine learning. Machine learning 

has been evolved into this field in the last two decades. Support 

Vector Machines SVMs, random forests, logistic regression and 

deep artificial neural networks ANNs were employed in different 

combinations in order to get high performance results, and thus 

to correctly identify malware from benign files. Since Windows 

machines are the most popular in the area of desktop and laptop 

computers, we are building our study upon the portable 

executable (PE) format; the file format for executables of 

Windows operating systems. Accordingly, features were 

extracted from the PE header fields to be used as inputs to our 

model. Several researches considered dealing with executable 

files as images a good way to benefit from the advantages of 

Convolutional Neural Networks CNNs to detect malware. In our 

study, we are using a relatively new class of CNNs, namely 

Residual Networks ResNets. These are CNNs based on shortcut 

connections for feature reuse. The extracted PE features were 

converted to byte values, afterwards fed to the ResNet model as 

greyscale images. The obtained results were reasonably 

satisfying. 
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I. INTRODUCTION 

Recognition and identification of malware is an active area 

because of the huge number of malicious software daily 

registered. Every day, the AV-TEST Institute registers over 

350,000 new malicious programs (malware) and potentially 

unwanted applications (PUA) [1]. There are three approaches 

to identify malicious from legitimate files. The first one is the 

static approach. It relies on the extraction of signatures, which 

are values present in the files, or values that should be 

calculated using a hash function for instance, like the MD5 

message-digest algorithm. Even though this approach excels 

at blocking known malware, it would never detect new ones 

as they use novel signatures. The second approach is the 

dynamic approach. This one is based on the execution of the 

files on a virtual environment or a sandbox to be able to detect 

the suspicious activities and visualize the behaviour of each 

file. This approach requires a long period of scanning, and a 

high consumption of resources. The third approach is the 

heuristic approach based on machine learning models, which 

has proven its success the last two decades. It can rely on 

static features, on dynamic features, or on both of them. 

There are a lot of factors that influence the success of a 

model, particularly the types of extracted features, the feature 

selection techniques, and the used machine learning 

algorithms [2]. In this paper, we are using PE features as 

inputs to our model and a residual neural network model as 

classification technique. Residual networks are a new form of 

deep learning models introduced the last four years, initially 

for image recognition. 

Deep learning models suffer from the well-known 

vanishing gradient problem. This problem gets bigger when 

using a large number of layers. The gradients become too 

small hence the training doesn’t happen efficiently. The 

apparition of residual networks ResNets for image recognition 

[8, 13] was innovative for providing a new solution to this 

problem. This kind of networks was thereafter used in Natural 

Language Processing NLP [14], in morphological reinflection 

[15], in language identification [16], in semantic tagging and 

Part-of-Speech POS tagging [17], and in single image super 

resolution [18]. Inspired by the great results obtained by these 

studies, ResNets were used in our study for the first time for 

malware detection, to the best of our knowledge. 

II. RELATED WORK ON MALWARE DETECTION 

The ability of machine learning models to learn from 

training data, and subsequently to generalize to previously 

unseen data is a major reason to have an increasingly number 

of researches interested in this area. Each research relies on 

different features and different classification techniques. 

In [3], each sample from the training dataset was executed 

within a virtual environment to capture dynamic behaviour of 

it. The model was then built upon 300 vectors of nine 

collected machine activity metrics. These metrics are: CPU 

user use, CPU system use, RAM use, SWAP use, received 

packets, received bytes, sent packets, sent bytes, and the 

number of running processes. These metrics were afterwards 

transformed to 300 vectors of x-y coordinates using Self 

Organizing Feature Maps SOFMs. The dataset was constituted 

of 1188 PE files; 594 malicious and 594 benign. Half the files 

were used for training and the other half for testing. After 

registering the machine activity metrics each second in a 5-

minutes time window, the researchers ended by collecting a 

dataset of 345,000 observations. For comparison, two machine 

learning classifiers were used in two separate experiments. 

Random forest was used in a first experiment, and in a second 
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one, logistic regression was used. The best accuracy, namely 

86.70%, was obtained using logistic regression. 

As for [4], API calls and operating system resource 

instances were used to identify API call graphs. These graphs 

were used as input features for the designed deep learning 

model. Multiple layers of Sparse Auto Encoders SAEs were 

employed to reduce the size of the original extracted features, 

followed by a Decision Tree classifier. The training dataset 

was constituted of 1760 samples, where 880 files were 

malicious and 880 were benign files. 10-fold cross-validation 

technique was used for training and testing. The achieved 

detection precision was 98.6%. In this paper, we are 

comparing the results of the different researches according to 

the accuracy metric. However, only the precision rate was 

published for [4]. 

The features used in [9] were n-gram system call sequences. 

A combination of two models was used, giving two pairs of 

probability values for each sample. Thereafter, these 

probabilities were compared to a threshold to get the final 

prediction result. The first model was the Long-Short-Term 

Memory LSTM. Here, the information gain technique was 

employed as feature selection technique, in order to remove 

redundant sub-sequences. Afterward, the LSTM model was 

fed, followed by a Max-Pooling layer then by a logistic 

regression classifier. The second model was the Random 

Forest model. At this point, the input features were API 

statistical features, obtained from the association of two API 

calls, based on the comparison of the two API call sequences 

hashes. Initially, the experiments were conducted using each 

model separately. The results got by combining both models 

were better. The obtained accuracy using the combination of 

both models was 95.7%. 

Since CNNs demonstrated high performances in image 

recognition, numerous malware detection researches took 

advantage of this type of algorithms. The work of [5] relied on 

a dynamic approach. The samples were executed in virtual 

machines, then process performance metrics were extracted. 

Each sample was represented as an image, the rows contained 

the executed processes, and the columns contained the 28 

extracted features per process like the process status, the CPU 

usage percent, the number of read requests, the number of 

write requests, the number of read bytes, the number of 

written bytes, etc. CNNs were employed to classify the 

samples. An accuracy of 90% was obtained on the test dataset. 

In [6], the raw bytes of each executable file were converted 

using an embedding layer, in order to be used as input features. 

Through this embedding layer, each byte was mapped to a 

fixed length feature vector. They avoided to use raw byte 

values, as they can lead to the interpretation that certain byte 

values are intrinsically closer to each other than other byte 

values, which is absolutely false as byte value meaning 

depends on the context. The model was constructed from 

CNNs and Recurrent Neural Networks RNNs followed by a 

fully connected layer. A dataset of 400,000 files split evenly 

between benign and malicious files was used for training. And 

a distinct testing set of 77,349 files was used for the final test 

phase. An accuracy of 90.90% was obtained. 

III. DEEP RESIDUAL LEARNING 

A. Strengthening Vision with CNNs 

A convolution operation is an element wise matrix 

multiplication operation. CNNs are based on convolutions 

between the input images and a number of filters. These filters 

are not predefined, they are learned during the training process. 

After this operation, new images called feature maps are 

obtained. Each convolution, or the application of each filter in 

other words, will change the image in such a way that 

particular features get emphasized. Next to convolutions, 

pooling can also be used within CNNs. It is a way of 

compressing the convolved images, in order to reduce the 

number of parameters and computations in the network. 

Because of the ability of a CNN to learn the existence of a 

feature regardless of its position, and since the different parts 

of a PE executable file can be placed anywhere within the file, 

as observed for instance by Barker et al. in [6], CNNs have 

been introduced to malware detection field in plentiful 

researches. 

B. Problem with Deep Neural Networks 

The intuition behind deep learning is that adding more 

layers makes the model learning more complex features. 

Accordingly, it becomes able to make more accurate decisions. 

However, [8] showed that continuing to go deeper affects 

negatively the performance of a traditional CNN model. They 

conducted experiments on the CIFAR-10 dataset [10] to 

classify images. Fig. 1, represented by the experiments of [8] 

depicts the performance decreasing going from a model with 

20 layers to a model with 56 layers. 

 

Fig. 1 Training error (left) and test error (right) on CIFAR-10 with 20-layer 

and 56-layer plain networks. The deeper network has higher training error and 

thus higher test error [8] 

This problem of performance degradation can be returned 

to a very known problem, namely the vanishing gradient 

problem. The gradients become negligible when they pass 

from the end to the beginning of the model through the high 

number of layers. Furthermore, the problem can be caused by 

the loss of input information when it travels from the 

beginning of the network to its end. In order to lighten this 

problem while training very deep neural networks, the authors 

have introduced residual blocks. These blocks are based on 

feature reuse. 

C. Residual Blocks 

A residual block is a block of layers that adds the input to 

the output, before continuing to feed a new block of layers. It 

can be constituted of numerous convolutional layers, generally 

two or three but can be more. 

PC2
Texte tapé à la machine
Copyright 2019ISSN 1737-930X

PC2
Texte tapé à la machine
International Journal of Computer Science, Communication & Information Technology (CSCIT)Vol.8 pp. 17-22



Let us consider x the input to a few stacked layers of a deep 

machine learning model, and F(x) the output of it. If we 

assume that x and F(x) have the same dimensions, then a 

residual block can be defined by equation (1): 

y = F(x) + x     (1) 

 

Fig. 2 shows the building block of residual learning as 

given by [8]. 

 
Fig. 2 A residual block [8] 

 

The operation F + x is performed by a shortcut connection 

and element-wise addition [8]. It introduces neither extra 

parameters nor calculation complication. 

If x and F(x) don’t have the same dimensions, the identity 

mapping x can be multiplied by a linear projection just to 

match dimensions, as represented by equation (2):  

y = F(x, {Wi}) + Ws x    (2) 

 

Where: Wi are the weights to be learned in the stacked 

layers of the residual block 

Ws is the matrix used to match dimensions 

 

Residual networks are constituted by stacking consecutive 

residual blocks together. As we just saw above, they are based 

on shortcut connections to propagate and reuse information 

over the layers of the model. This helps in mitigating the 

effect of the vanishing gradient problem, allowing us to build 

deeper networks with higher performances. 

D. Residual Networks in Image Recognition 

In [8], ImageNet 2012 classification dataset [11] was used 

to test the efficiency of a residual network architecture. It 

consists of 1000 classes of images. The results are depicted in 

Fig. 3. In the left, training and test errors are drawn for two 

plain networks, without residual blocks. The first one is 

constituted of 18 layers and the second one of 34 layers. In the 

right, training and test errors are drawn for two residual 

networks, one model with 18 layers and the other one with 34 

layers. 

 
Fig. 3 Training on ImageNet. Thin curves denote training error, and bold 

curves denote validation error of the center crops. Left: plain networks of 18 

and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual 

networks have no extra parameter compared to their plain counterparts [8] 

In Fig. 3, we can clearly see that the validation error of the 

34 layers-residual network is the lowest one among the 

validation errors of all other networks. Both residual networks 

in this figure, have no extra parameters compared to their 

plain counterparts. 

The study of [8] demonstrated that by increasing the depth 

of the network, and using residual networks, better validation 

accuracies can be obtained. We can conclude from this, that 

adding more residual blocks to the network helps with 

generalization. 

IV. IMPLEMENTATION AND EXPERIMENT RESULTS  

A. Dataset Used 

We empirically demonstrate the effectiveness of the 

residual network built in our study on the EMBER dataset [7]. 

It consists of 900K training samples (300K malicious, 300K 

benign, and 300K unlabelled) where only the benign and the 

malicious ones were utilized in our experiments. In addition to 

the training samples, it contains 200K test samples (100K 

malicious and 100K benign). The training of our model was 

done on 80% of the 600K samples training dataset, the 

remaining 20% of the data were used for the validation at the 

end of each epoch. The 200K test samples were totally kept to 

the end of the training in order to evaluate the model on 

previously unseen data. The employed features are values 

extracted from the PE header fields. These features consist of 

information describing the executable file, like the virtual size 

of the file, the virtual address where the program will start the 

execution, API import and export functions, the number and 

size of different sections in the file, etc. As shown in [2], 

various researches adopt the PE features for building their 

models obtaining high accuracy rates. Fig. 4 shows an 

example of the extracted features from an executable in our 

study as given by [7]. 

B. Methodology 

The vectorizing of raw features is provided by the EMBER 

authors [7], so each sample is represented as a feature vector 

of dimension 2351. A residual network needs images as inputs. 

To implement our malware detection model, we chose to 

represent each sample as a greyscale image of 50 by 50, so we 

padded each vector by 149 zeros, then we reshaped it to an 

array of 50 by 50 to feed the model. 

CNNs were largely used for malware detection. As far as 

we know, residual networks were not yet employed in this 

field. Motivated by the success of these networks in image 

classification primarily, then in many other fields, we were 

convinced that they will give favourable results in the 

classification of legitimate and malicious files. 

Various implementations were tested in our experiments. 

After comparison, we retained the implementation described 

below. 

We chose to add noise to the input layer through a Gaussian 

noise layer. This layer has a regularizing impact and helps to 

lessen overfitting. Then, a 2D convolutional layer is added. 64 

filters are used, which means trying to detect 64 different 

features. 
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"sha256": "000185977be72c8b007ac347b73ceb1ba3e5e4dae4fe98d4f2ea92250f7f580e", 

"appeared": "2017-01", 

"label": -1, 

"general": { 

"file_size": 33334, 

"vsize": 45056, 

"has_debug": 0, 

"exports": 0, 

"imports": 41, 

"has_relocations": 1, 

"has_resources": 0, 

"has_signature": 0, 

"has_tls": 0, 

"symbols": 0 

}, 

"header": { 

"coff": { 

"timestamp": 1365446976, 

"machine": "I386", 

"characteristics": [ "LARGE_ADDRESS_AWARE", ..., "EXECUTABLE_IMAGE" ] 

}, 

"optional": { 

"subsystem": "WINDOWS_CUI", 

"dll_characteristics": [ "DYNAMIC_BASE", ..., "TERMINAL_SERVER_AWARE" ], 

"magic": "PE32", 

"major_image_version": 1, 

"minor_image_version": 2, 

"major_linker_version": 11, 

"minor_linker_version": 0, 

"major_operating_system_version": 6, 

"minor_operating_system_version": 0, 

"major_subsystem_version": 6, 

"minor_subsystem_version": 0, 

"sizeof_code": 3584, 

"sizeof_headers": 1024, 

"sizeof_heap_commit": 4096 

} 

}, 

"imports": { 

"KERNEL32.dll": [ "GetTickCount" ], 

... 

}, 

"exports": [] 

"section": { 

"entry": ".text", 

"sections": [ 

{ 

"name": ".text", 

"size": 3584, 

"entropy": 6.368472139761825, 

"vsize": 3270, 

"props": [ "CNT_CODE", "MEM_EXECUTE", "MEM_READ"] 

}, 

... 

] 

}, 

"histogram": [ 3818, 155, ..., 377 ], 

"byteentropy": [0, 0, ... 2943 ], 

"strings": { 

"numstrings": 170, 

"avlength": 8.170588235294117, 

"printabledist": [ 15, ... 6 ], 

"printables": 1389, 

"entropy": 6.259255409240723, 

"paths": 0, 

"urls": 0, 

"registry": 0, 

"MZ": 1 

}, 

} 
Fig. 4 Raw features extracted from a PE file [7] 

After that, a Batch Normalization layer is added. As 

explained by [12], a batch normalization consists of 

performing the normalization for each training mini-batch. 

This procedure accelerates the training of deep neural 

networks. 

The chosen activation function is the Rectified Linear Unit 

ReLU. The role of each activation function is to do a non-

linear transformation to the input data, making the model 

qualified to achieve more complex tasks. ReLu is the more 

popular activation function nowadays. As demonstrated by 

[19], the main benefit of ReLu is the non-saturation of its 

gradients, which enormously hasten the convergence of 

stochastic gradient descent in comparison with the sigmoid 

and the tanh functions. 

Next, a max pooling layer is introduced. This layer has no 

parameters to learn, it takes a region of the convolved image 

of a fixed filter size, in our case, this region has a dimension 

of 3 * 3, then selects the maximum value of its different 

values; the 9 values in our case. The biggest role of this layer 

is to continuously lessen the spatial size of the feature maps, 

as said earlier, and consequently to reduce the amount of 

computations on the network, while preserving the most 

important information. 

Subsequently, two residual blocks are added. Each residual 

block consists of two convolutional layers with batch 

normalization and a ReLU activation function, followed by 

adding a shortcut connection to the output of these two 

convolutional layers, then passing the result again through a 

ReLU activation. Finally, since we are involving binary 

decisions, either malicious or benign class, we are using 

binary cross-entropy as loss function. 

C. Experiments and Evaluation Results 

All the experiments in this paper were conducted on a 

laptop computer with Intel® Core (TM) i7-6500U @ 2.50 

GHz, 2.59 GHz, and 16 GB of RAM. 

Based on the dataset described in Section IV.A, we 

evaluated the experiments in two perspectives; a residual 

network model without dropout regularization and a residual 

network model with dropout regularization. 

After several attempts of parameter tuning, for each model 

type, the best results were obtained using a learning rate of 

0.00007, a batch size of 256 and 64 filters for the different 

convolutional layers. We trained each model for 80 epochs. 

The figures 5 and 6 represent the training and validation 

loss and accuracy obtained with both models, without and 

with dropout regularization. After a certain epoch, the model 

continues to learn peculiarities of the training data and is not 

any more able to generalize well to previously unseen data. 

Therefore, we had to opt for an early stopping approach in 

order to get the best test accuracy. Our code saved the trained 

model at the end of each epoch, in order to be able to adopt 

the most fitting one. The epoch to stop at is different from a 

model to another. 

For the residual network model without dropout 

regularization, the best validation accuracy was obtained at 

epoch 72, namely 93%, however the test of the saved model at 

this epoch on the 200,000 previously unseen test samples, 
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lessened enormously, resulting in 83.10% as test accuracy. 

The second-best validation accuracy was observed at epoch 27, 

namely 91.01%. Here we obtained a test accuracy of 88.30%. 

Therefore, we retained the model saved at epoch 27. The 

accuracy decreased by 2.71% from validation to testing data. 

This decrease is a normal behavior of machine learning 

models as seen on [2], as the models are exposed in this final 

phase to totally new data. 

As for our residual network model with dropout 

regularization, the best validation accuracy was obtained at 

epoch 79, namely 92.29%. At this epoch, the saved model 

presented the best test accuracy, that is 90.38%. Here we have 

an accuracy decrease of 1.91%. 

 
Fig. 5 Train and validation loss and accuracy obtained with our ResNet model 

without dropout regularization 

 

 
Fig. 6 Train and validation loss and accuracy obtained with our ResNet model 

with dropout regularization 

 

The final test accuracies of both models are shown in 

Table1. 

TABLE I 

TEST ACCURACIES ON EMBER TEST DATASET FOR BOTH MODELS 

 Test Accuracy 

Without Dropout 88.30% 
With Dropout 90.38% 

 

We see evidently that the residual network model with 

dropout regularization performs better giving us an accuracy 

of 90.38%. This accuracy is even better than some other 

previous researches on malware detection using machine 

learning as shown in Table 2.  

TABLE II 

COMPARISON OF OUR MODEL WITH SOME PREVIOUS RESEARCHES 

 Accuracy 

 Random forest [3] 86.70% 
CNNs [5] 90% 

Our ResNet model 90.38% 

 

V. CONCLUSIONS 

The use of residual networks in malware detection is new 

as far as we know. The model built in this paper represents a 

first approach using these powerful networks in this field. The 

obtained results were satisfying as shown. However, they can 

be much more improved in the future with more hyper-

parameters tuning, with the employment of feature selection 

techniques, and with adopting other types of features in 

addition to PE features.  Implementing deeper residual 

networks may also help on getting better results. However, the 

training of these deeper networks can be painfully time-

consuming and needs more powerful machines with GPUs 

and larger RAM sizes. 
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