“International Journal of Computer Science, Communi
Copyright — IPCO-2014"

Vol .1, pp.1-6, 2014

cation & Information Technology (CSCIT)

An Intrusion Detection Approach by Global Analysis

Ines Ben Tekaya, Bechir AyeB*, Mohamed Graief

Unité de recherche PRINCE
Faculté des sciences de Monasii90OMonastir.Tunisie
! bentekaya.ines@voila.fr
ayeb_b@yahoo.com
" MIRACL, ISIMS
BP 1030, Sfax 3018, Tunisie
Z mohamed.graiet@imag.fr

Abstract— This paper describes literature works in intrusion
detection field. After that, we propose an intrusim detection
method in Linux/Unix commands using global analysis.This
method was applied to distinct normal user behaviorfrom
intruders behavior. The main features of this workare twofold.
It exploits formal method in the intrusion detectin field. It
presents our tool for Linux Intrusion Detection (TLID) which
can automatically transform Linux code to Symbolic Model
Verifier.

Keywords— Computer attacks, intrusion detection, computer
security, Linux commands, model verifier

I. INTRODUCTION

The intrusion field was introduced by Anderson.wias
defined as an attempt or a threat to be the palguissibility
of a deliberate unauthorized attempt to accessrrimdton,
manipulate information, or render a system unrédiabr
unusable [1]. The difference between intrusion athck
consists of the fact that intrusion is a malicioagternally or
internally induced fault resulting from an attadkatt has
succeeded in exploiting vulnerability, while a fai$ the
adjudged or hypothesized cause of an error, theecau
which is intended to be avoided or tolerated. Atackt is a
malicious technical interaction fault aiming to &ip
vulnerability as a step towards achieving the fiaiah of the
attacker [2].

A statistical study shows that 98% of enterprisaseha
firewall to be protected from external attacks; ewer, 80%
of attacks came from internal users [3]. Detectinggrnal
normal user behaviour is a difficult problem beeaasuser
can have much dynamic behaviour and
difficult to create user profiles that determinee thormal
behaviour. Using a system to distinct normal usemf
intruders is necessary. This system is called $mru
Detection System (IDS). It is defined as a secusghnology
attempting to identify and isolate computer systémrsisions
[4].

During the last two decades, many strategies arttiaus
for intrusion detection have been developed. Weaosh to
work with Unix/Linux operating system because irojple's
minds, if it is non-Windows, it is secure [5]. THigpothesis
will be countered here. More details for Unix/Lingystem
can be found in [6]. The literature on detectionings
Linux/Unix commands offers a variety of methods.spiee
their diversity, their common objective is: to dhisfuish

between a normal behaviour and an intrusive bebavithey
are based on local analysis witch can not be etprivdo a
global analysis.

The reminder of the paper is organized as follogcti®n 2
deals with intrusion background. In section 3, weeatibe our
method. In section 4 we propose the TLID tool, amdshow
some experimental results for intrusion scenatimsection 5
we will draw our conclusions and plan for futureriuo

II. INTRUSIONBACKGROUND
The next subsections summarize detection methadg UBNIX
commands and show their limitations

A. Detection Using UNIX Commands

The object of intrusion can be files, data baseswork
connection, Input/output systems or commands Lidokd.

In this paper we are interested about intrusiomgisi
Linux/Unix commands because it can characterizer use
behaviour more efficiently than other object. Tladldwings
paragraphs present some works about methods usig U
commands. These works are interested on intrusédecton
or on a specific intrusion like masquerade detactio

llgun, et al. present the state transition analysethod
[71[8]. They used the known Unix intrusion to creaha
penetration scenario. A penetration is viewed sscquence of
actions performed by an attacker that leads fromesmitial
state on a system to a target compromised stagrevehstate
is a snapshot of the system representing the vadfiesll
volatile, semi-permanent and permanent memory imeston
the system. The initial state corresponds to thge sbf the

it will be aimoSystem just prior to the execution of the penedratiThe

compromised state corresponds to the state regdtom the
completion of the penetration. Between the initahd
compromised states are one or more intermediatee sta
transitions that an attacker performs to achievee th
compromise.

Another method is based on sequence matching. The
incoming stream event is segmented into overlap/fixed
length sequences. The choice of the sequence lehgth
depends on the profiled user. In practical, itsefl to the
value | = 10 in the SEA dataset [9]. Each sequéadien
treated as an instance in an I|-dimensional spaak ian
compared to the known profile. The profile is a, §&f, of
previously stored instances and comparison is pedd
between all yI{T} and the test sequence via a similarity

PC
Typewriter

PC
Typewriter
Vol.1, pp.1-6, 2014

PC
Typewriter

“International Journal of Computer Science, Communi cation & Information Technology (CSCIT)
Copyright — IPC0O-2014"
measure. Similarity is defined by a measure, Sity)xywhich The observed user behavior is deduced from Linmitel.
makes a point-by-point comparison of two sequencasid y, In the rest of this paper, we use the term Linuliclv can be
counting matches and assigning greater weight jacadt interchanged with Unix. We are interested about imux
matches. script not about a line of commands. So we focuglobal
The maximum of all similarity values computed forthe analysis, which is represented by a Linux scriptoWing that
score for the test command sequence. Since thesessare a global analysis cannot result automatically frdocal
very noisy, the most recent 100 scores are averdfigde analyses, the fundamental question is: what aretypieal
average score is below a threshold an alarm i®dai¥he properties which characterize an attack scripte@uence of
threshold is determined based on the quantileseoémpirical commands leading to faults) ?
distribution of average scores [10]. The temporal logic seems address this questionit £o
Another method, used statistical method, is callatcessary to specify the global properties. Themies user
uniqueness. It is based on the idea that commarmds lehavior is expressed by a Linux / Unix script, and
previously seen in the training data may indicatea@iempted transformed afterward in a target language. Ibis\ecessary
masquerade. Uniquely used commands account forf3¥eo to verify, at any time, the respect of the progsxtiThis check,
data. A command has popularity i if exactly i usese that refers to "model checking", was experimented withl\S
command. They group the commands such that eaalp gréSymbolic Model Verifier). This led to LSc2SMV (Lirx
contains only commands with the same popularityeyThScript to Symbolic Model Verifier). This prototypedl
define a test statistic that builds on the notidruopopular allows a Linux code processing to SMV language.
and uniquely used commands. They assign the saeghtiid The result will be verified properties if the bekaw is
to all users. This threshold is estimated via cnafation: normal or violated properties if the behaviour rrusive.
They split the original training data in the SEAtaket into Figure 1 illustrates this schema.

two data sets of 4000 and 1000 commands. Usindatiger User observad behaviolr System specification

data set as training data, they assign scorefiéosrhaller one.

This is repeated five times, each time assignimgyexcto a Script Linug

distinct set of 1000 commands. They set the thidstwothe

99th percentile of the combined scores acrosssalisuand all Rewrriting in temparal bbgig

five cross validations. For their data, the resgltihreshold is
0.2319 [9][11].

B. Limitations in existing methods

The intrusion detection method in Linux/Unix comrdan
using formal verification seeks to improve on somg
limitations that the authors observed in the exgstinethods.
This section briefly identifies some of their chamistics.
The major weakness of these methods is that thpgndkon
aggregative, training or experimental past datae f@sults of
statistical methods are closed to the training deltde the
result of state transition analysis method is ddpeith the Fig.1 A diagram tracing our method.
defined penetrations attacks which are non valuate A Global .

Another limitation is they are based on analysiogjmmand “ obai properties
by command (line per line). This local analysis cat be The global properties or anti-properties (AP) anevanted
equivalent to a global analysis (all of lines). properties that can cause damage in our systeny. Getrebe:

Lastly, they cannot make difference between thersraf + AP1: Execute some illegal commands,
commands in the sequence used. The statisticaloetare ~ * AP2: Change source or command destination,
based on the command frequency while a state tramsi * AP3: Execute illegal actions (parameters, etc.),
analysis method can't detect the attacks basedequéncy * AP4: Having infinite loop,
such as deny of service. « AP5: HaVing auto-replication,

In the following, we focus in these limitations poesent ~ * AP6: Detain a resource infinitely ...
our method based on model using formal verificatwith

S code Logical properties

Result

Symbolic Model Verifier (SMV). The system specification are formalizes using tRe Fhey
can be expressed in proportional logic or templogit.

[ll. INTRUSIONDETECTIONIN LINUX/UNIX The temporal logic is used within the framework tbé

COMMANDS BY GLOBAL ANALYSIS reagent systems, which where the software is s@gbos

This section presents an overview about our inprusjMaintain a relation of coherence between the ifiputs and

detection method by global analysis. It's basedtemporal the output flows. The temporal logic allows expiegsthe
logic and formal verification. state evolution of a system.

“International Journal of Computer Science, Communi cation & Information Technology (CSCIT)
Copyright — IPC0O-2014"

We choose the temporal logic because temporal isgin Some other conversion in the file name or in thieldo
extension of propositional logic. Either in temgotagic, name, in arrays, in expressions cases, in functionsan be
propositions are qualified in terms of time. given. More details can be found in [12].

The following paragraph explains how to write soofi¢he))
anti-properties AP and properties (P) using terridotgc. C. Observed Behavior Analysis

AP: Execute some illegal commands Algorithm in figure 2 gives the user behavior typéhe

The AP considers that user can execute some illegakput of this algorithm is the behavior type. There two
commands. For example, if the user is not an adnator, he inputs: @, the anti-properties, anf, the observed’s user
can’'t execute some commands like adduser, usendeitab, behavior.

etc.
P: Do not execute some illegal commands; Input: B and®
P ={(Ui,,C))/Ui 0 U et CjO C} _
where: U: set of users Output: Behavior type
C: set of illegal commands 1 begin
(Ui, Cj): Ui can use Cj) L
Use(Ui, Gj) - (Ui, Cj)) OP 2 if B satisfied ARthen
Some others anti-properties can be formalized sash 3 Forbidg
having auto-replication, detain a resource infigitetc. Due
to space limitation, others properties can be fanr{d2]. 4 else
B LSc2SMV 5 Authorized behavior
The LSc2SMV tool will convert Linux script (LSc) tan 6 end
SMV language. 7end
A specification for SMV is a collection of propesi

Properties are specified in a notation called tewmphogic.
Temporal logic specifications can be automaticédigmally
verified by a technique called model checking.

SMV is quite effective in automatically verifyinggperties. In anomaly detection of user behavior, we need to
Sometimes, when checking properties, the verifieitl wdistinguish between normal and intrusive behavio. we
produce a counterexample. This is a behavioraletrthat analyze the observed user behavior.
violates the specified property. The SMV code Ww#l in the ~ The basic action of anomaly detection is to compthee

Fig.2 Algorithm for analyzing the observed beloavi

form of main module (). observed user behavior and the anti-properties. Tages
Table | shows the transformation in the conditionl 0op appear in the algorithm:
cases form. 1) The observed user behavior satisfied one or many
TABLE | anti-properties.
CONDITIONS AND LOOP CASES 2) The observed user behavior doesn’t satisfy amiy a
properties.
Type | LSc SMV__ The first case represents the intrusive behavibe Second
Condition | if[<condition>] <stmtl> | if(<condition>) . .
else <stmt2> fi <stmtl> case represents t_he norr_nal behavior. In fact tkee seript
else <stmt2> typed is an authorized script. .
Case case $variable in case{<condl>: Let's: B the observed user behavior
vall) stmtl> ; ; <stmtl> @ an anti-property
...... *) <stmtn>;; esac | ... <condn>: <stmtn> @ a set of anti-properties
[default : <dftlstmt>]} B |= @ : the observed user behaviour satisfy all defined
Switch switch(<expr>) switch(<expr>)Y{ anti-properties
<casel>: <stmtl> <casel>:<stmtl>... B |= @ : the observed user behaviour satisfy a anti-property
breaksw <casen>: <stmin> In this case, we should verify the other propertiesause we
<casen> : <stmtn> [default : <dftlstmt>]} .
breaksw can have : _ _
default : <dftlstmt> « B J& @ : the observed user behaviour don't satisfy all
breaksw endsw defined anti-properties. The observed user behavou
for for var in $files ; for(var = init ; cond ; an authorized behaviour.
do var = next) « B |= @ : the observed user behaviour satisfy all defined
<stmt> anti-properties. The observed user behaviour is an
while while condition ; do intrusive behavior.
<stmt> done -

The indirect transformation is based on propettegerify
in Linux script.

“International Journal of Computer Science, Communi cation & Information Technology (CSCIT)
Copyright — IPC0O-2014"

V. TLID: TOOL FORLINUX INTRUSIONDETECTION violated property (false value) because the behavis

The TLID architecture can survey a user and analyge Intrusive.

behaviour. TLID can do a global analysis betweserst Another scenario consists of sending many mail fuser
ines to another user to saturate his mail. In¢hise, the user

A. Survey a user troismille cannot access to his e-mail. The scenargiven by

There are two solutions to survey a user: figure 6.
. The first solution consists in using the Using TLID, we choose the anti property: Havinginite
fle .bash_history. But this file cannot give doop. If we don’t know how a property to choose, w&n
strengthened and real-time history because when yoark all checkbox. The result is given by figure The
use other shell, like csh,, this method cannot shee behaviour is intrusive.

history. Either when you tape kill -9.
« The second solution is to develop a patch. It ciasd

modify file system in Linux, which are bashhist.c,

histexpand.c, histfile.c, history.h and history&e do

V. CONCLUSIONS
In this paper, we are interested by attacks usiimux

this because Linux is an open source (to obtain themmands. We have proposed a new method for anomaly

patch e-mail : bentekaya.ines@voila.fr).

detection of user behavior. It exploits model cliegkto
verify the correctness of our system. It combirexusty field

You can choose a user and we obtain the user'shadabe with formal verification. This method is applied thstinct

behaviour. You can either choose a user and agiayyn in
figure 3, and we obtain the user's observed belavio this
day. The result is composed by time, process ffientiPID)
and commands.

B. Analyse user behaviour

After survey a user, you can choose a propertyetdy In
this example, we choose to verify the service darfigure 4.
The button LSc2SMV became enabling. When we cliekol,
we obtain the SMV file. This file contains the eation of
every actions do by selected user in the chosenldegnsists
to verify the specified properties. We choose “ppverify
all" to verify if the properties we specified iact hold true or
false for all time. If the property should be falsa
counterexample appears in the trace page.

Intrusion scenario Sc between users can be defised

Sc={A, V, S} with:

A: an attacker

normal user behavior from intruders’ behavior.

The user's observed behaviour is deduced from Linux
terminal. We are interested about a Linux script almout a
line of commands to perform a global analysis. Kimgwthat
a global analysis cannot result automatically frdocal
analyses, the fundamental question is: what aretythieal
anti-properties which characterize an attack seript

We choose to transform these properties into teatpogic.
We exploit model-checking to automatically verifyai given
user behaviour satisfy or not some properties. ®usto the
TLID tool development. We give some experimentalitts.

There is another attacks group which can be named
unknown attacks. In this new group, attacks cowdse the
intrusion detection systems crash and thus incampéssting.

It becomes clear that present approaches to eeailutatision
detection system are limited to some known attacks.

We divide our future work into two main parts: refiand
improve attacker competence and extend scenarioctode

V: a victim multi-attacks and equivalent attacks.
S ={s1, s2... sn}: a set of steps
Every step is a sequence of commands with their REFERENCES
parameters. The next paragraph shows an exampleenério. [1] J. P. Anderson, “Computer Security Threat Monitgrirand

It have been developed and tested in Linux RedBr&grprise
version 5 and we use TLID and SMYV for verification.

We develop an example of denial of service which ferk
bomb. The code in figure 3 is the following:

[ines@localhost tmp]$ function testb()

{

testb|testb &

} ;testb

It works by creating a large number of processes vé4l

quickly in order to saturate the available spac¢hm list of
processes kept by the computer's operating systeitine
process table becomes saturated, no new programstand
until another process terminates.

The generated SMV code is given by figure 4. Tr*tg]

properties to verify is called deny. We choose ofpverify

all" to verify deny. The result is given by figuse We have a

Surveillance,” Technical report, Washing, PA, JarReAnderson Co.,
1980.

[2] D. Powell and R. Stroud, “Conceptual Model and Atetture of
MAFTIA”, Eds., MAFTIA (Malicious and Accidental FétuTolerance
for Internet Applications) project deliverable D21 AAS-CNRS
Report 03011, 2003.

[3] C. Mathei,.

(2004) “Ouverture des réseaux |IP da&prtse : risques ou
opportunité ?” [Online]. Available:
http://www.awt.be/contenu/tel/res/IPforum23-04_Reése unifié
sécurisé.pdf.

B. E. Cloete and L. M. Venter, “A comparison ofrlrgion Detection
systems” Computers & Security, vol 20, Issue 8, §p6-683, Dec.
2001.

et

[5] A. Patrizio. (2006) “Linux Malware On The Rise.Ofline]. Available:
http://www.internetnews.com/devnews/article.php/B566.
[6] M. Santana, “Chapter 6 - Linux and Unix Securityon@puter and

Information Security” Handbook 2009, pp. 79-92.

Koral llgun , Richard A. Kemmerer , Phillip A. Pagm. “State
Transition Analysis: A Rule-Based Intrusion DetentiApproach. ”
Journal IEEE TRANSACTIONS on Software Engineerivgl. 21, No.
3, pp. 181-199, 1995.

“International Journal of Computer Science, Communi cation & Information Technology (CSCIT)
Copyright — IPC0O-2014"

i r._isiun_ =] iGnuEHig LU Comimands
AT Sniffer Deleciion

Choose a wsern: ines e |

Clhvoos s = cay: |—-.II" e =l1--_-r ”2131-1 --l[

Time=Wed Jun 1 171803 2011 21217 iunchon iosth| {ieshitcstt &hbssib

e i i
|| P2 Feangs source ar con ms nd des Lina ko

L P3: Use lgal pa rametcres
Anti Properiics.
rHawving Infinfls oo p

| Ph.athar propertics o be define o

[iscesmw =

Fig.3 User’s observed behaviour in a chosen day

fonction.smy

Elle Prop ¥iew Goto History Abstraction Help

owser | Properties | Results
|hﬂpmﬂmME$ jﬂ
_Property | Status | 1
ey Lirsrerifiec

| Zone | Using | Groups |

File Show

module maini{name.carac,aco, peint, condl,cond) -
sutput condl, cond? : boolsat;
nams @ jtectkl;
marac r {pipel
aoa 1 lacooladal;
point @ {pointvirgule};
nam= = {testh];
caras = iplpal:
=cc = {accolade};
peint (= Jpeointwvirgulel
condl = nams & carad s name;
condZ = aceg & point L name;
denyiagscoert & ~{pond1 & condZ];
H
]

Fig.4 The generated SMV code

“International Journal of Computer Science, Communi
Copyright — IPC0O-2014"

cation & Information Technology (CSCIT)

1."D'I'|L'I‘I O Smy

Ele Erup !iew Goto I*Uﬁlw ﬂ.bﬂﬂaﬂﬂﬁ

perties | Results | m;' '

Property l Result |

deny false

Fig.5 Verification result

Kbneole

il invsmiocalhoct:-

= Turmina) -

| session Edition Affichage

signets Configuration

Aide

[ines@Elocalhost —1% while true;
do
= mutt -3

done &f]

"subject” -a fiche.t=xt troismille@localhost. localdomain =<corps.txt:

(17| @ Terminal |

Fig.6 An example of having infinite loop scenario

cafidlelan sny

Ele Prop View Goto Mistory Abstraction
Browser | Praperties | Results | Cone | Using | Groups |

 Property | Result |

lloap: (ET

Soursy | Trase | Log |
File Edit Run Wiew

Fig.7 The result of having infinite loop scenario

[8] K. llgun. “USTAT - A Real-time Intrusion Detectio®ystem for

UNIX,” Master's Thesis, University of California &anta Barbara,

Nov. 1992.

M. Schonlau, W. DuMouchel, W. H. Ju, A. F. Karr, Wheus and Y.
Vardi. “Computer Intrusion: DetectingMasquerades'tatiStical
Science, Vol. 16, No. 1,pp 1-17, 2001.

T. Lane and C E. Brodley. “Sequence matching arainiag in
anomaly detection for computer security.” In AAAld¥shop : Al
Approaches to Fraud Detection and Risk Managenamt,43-49.
AAAI Press (1997).

19

[10]

[11] M. Theus and M. Schonlau. “Intrusion detection baea structural
zeroes.” Statistical Computing and Graphics Neweled, pp. 12-17,
1998.

I.B. Tekaya, M. Graiet, and B. Ayeb. Intrusion dgien with symbolic
model verifier. In the Sixth International Confecenon Software
Engineering Advances, ISBN: 978-1-61208-165-6, pad83-189
(2011).

[12]

