
“International Journal of Computer Science, Communi cation & Information Technology (CSCIT)
Copyright – IPCO-2014”

An Intrusion Detection Approach by Global Analysis
Ines Ben Tekaya#1, Bechir Ayeb#1, Mohamed Graiet*2

Unité de recherche PRINCE
Faculté des sciences de Monastir, 5000Monastir, Tunisie

1 bentekaya.ines@voila.fr

ayeb_b@yahoo.com
* MIRACL, ISIMS

 BP 1030, Sfax 3018, Tunisie
2 mohamed.graiet@imag.fr

Abstract— This paper describes literature works in intrusion
detection field. After that, we propose an intrusion detection
method in Linux/Unix commands using global analysis. This
method was applied to distinct normal user behavior from
intruders behavior. The main features of this work are twofold.
It exploits formal method in the intrusion detection field. It
presents our tool for Linux Intrusion Detection (TLID) which
can automatically transform Linux code to Symbolic Model
Verifier.

Keywords— Computer attacks, intrusion detection, computer
security, Linux commands, model verifier

I. INTRODUCTION

The intrusion field was introduced by Anderson. It was
defined as an attempt or a threat to be the potential possibility
of a deliberate unauthorized attempt to access information,
manipulate information, or render a system unreliable or
unusable [1]. The difference between intrusion and attack
consists of the fact that intrusion is a malicious, externally or
internally induced fault resulting from an attack that has
succeeded in exploiting vulnerability, while a fault is the
adjudged or hypothesized cause of an error, the cause of
which is intended to be avoided or tolerated. An attack is a
malicious technical interaction fault aiming to exploit
vulnerability as a step towards achieving the final aim of the
attacker [2].

A statistical study shows that 98% of enterprises have a
firewall to be protected from external attacks; however, 80%
of attacks came from internal users [3]. Detecting internal
normal user behaviour is a difficult problem because a user
can have much dynamic behaviour and it will be almost
difficult to create user profiles that determine the normal
behaviour. Using a system to distinct normal user from
intruders is necessary. This system is called Intrusion
Detection System (IDS). It is defined as a security technology
attempting to identify and isolate computer systems intrusions
[4].

During the last two decades, many strategies and methods
for intrusion detection have been developed. We choose to
work with Unix/Linux operating system because in people's
minds, if it is non-Windows, it is secure [5]. This hypothesis
will be countered here. More details for Unix/Linux system
can be found in [6]. The literature on detection using
Linux/Unix commands offers a variety of methods. Despite
their diversity, their common objective is: to distinguish

between a normal behaviour and an intrusive behaviour. They
are based on local analysis witch can not be equivalent to a
global analysis.

The reminder of the paper is organized as follow. Section 2
deals with intrusion background. In section 3, we describe our
method. In section 4 we propose the TLID tool, and we show
some experimental results for intrusion scenarios. In section 5
we will draw our conclusions and plan for future work.

II. INTRUSION BACKGROUND

The next subsections summarize detection methods using UNIX
commands and show their limitations.

A. Detection Using UNIX Commands

The object of intrusion can be files, data bases, network
connection, Input/output systems or commands Linux/Unix.

In this paper we are interested about intrusion using
Linux/Unix commands because it can characterize user
behaviour more efficiently than other object. The followings
paragraphs present some works about methods using Unix
commands. These works are interested on intrusion detection
or on a specific intrusion like masquerade detection.

Ilgun, et al. present the state transition analysis method
[7][8]. They used the known Unix intrusion to create a
penetration scenario. A penetration is viewed as a sequence of
actions performed by an attacker that leads from some initial
state on a system to a target compromised state, where a state
is a snapshot of the system representing the values of all
volatile, semi-permanent and permanent memory locations on
the system. The initial state corresponds to the state of the
system just prior to the execution of the penetration. The
compromised state corresponds to the state resulting from the
completion of the penetration. Between the initial and
compromised states are one or more intermediate state
transitions that an attacker performs to achieve the
compromise.

Another method is based on sequence matching. The
incoming stream event is segmented into overlapping fixed
length sequences. The choice of the sequence length, l,
depends on the profiled user. In practical, it’s fixed to the
value l = 10 in the SEA dataset [9]. Each sequence is then
treated as an instance in an l-dimensional space and is
compared to the known profile. The profile is a set, {T}, of
previously stored instances and comparison is performed
between all y ∈{T} and the test sequence via a similarity

PC
Typewriter

PC
Typewriter
Vol.1, pp.1-6, 2014

PC
Typewriter

“International Journal of Computer Science, Communi cation & Information Technology (CSCIT)
Copyright – IPCO-2014”
measure. Similarity is defined by a measure, Sim(x, y), which
makes a point-by-point comparison of two sequences, x and y,
counting matches and assigning greater weight to adjacent
matches.

The maximum of all similarity values computed forms the
score for the test command sequence. Since these scores are
very noisy, the most recent 100 scores are averaged. If the
average score is below a threshold an alarm is raised. The
threshold is determined based on the quantiles of the empirical
distribution of average scores [10].

Another method, used statistical method, is called
uniqueness. It is based on the idea that commands not
previously seen in the training data may indicate an attempted
masquerade. Uniquely used commands account for 3% of the
data. A command has popularity i if exactly i users use that
command. They group the commands such that each group
contains only commands with the same popularity. They
define a test statistic that builds on the notion of unpopular
and uniquely used commands. They assign the same threshold
to all users. This threshold is estimated via cross validation:
They split the original training data in the SEA dataset into
two data sets of 4000 and 1000 commands. Using the larger
data set as training data, they assign scores for the smaller one.
This is repeated five times, each time assigning scores to a
distinct set of 1000 commands. They set the threshold to the
99th percentile of the combined scores across all users and all
five cross validations. For their data, the resulting threshold is
0.2319 [9][11].

B. Limitations in existing methods

The intrusion detection method in Linux/Unix commands
using formal verification seeks to improve on some of
limitations that the authors observed in the existing methods.
This section briefly identifies some of their characteristics.
The major weakness of these methods is that they depend on
aggregative, training or experimental past data. The results of
statistical methods are closed to the training data while the
result of state transition analysis method is depend with the
defined penetrations attacks which are non valuable now.

Another limitation is they are based on analysing command
by command (line per line). This local analysis can not be
equivalent to a global analysis (all of lines).

Lastly, they cannot make difference between the orders of
commands in the sequence used. The statistical methods are
based on the command frequency while a state transition
analysis method can’t detect the attacks based in frequency
such as deny of service.

In the following, we focus in these limitations to present
our method based on model using formal verification with
Symbolic Model Verifier (SMV).

III. INTRUSION DETECTION IN LINUX/UNIX

COMMANDS BY GLOBAL ANALYSIS

This section presents an overview about our intrusion
detection method by global analysis. It’s based on temporal
logic and formal verification.

The observed user behavior is deduced from Linux terminal.
In the rest of this paper, we use the term Linux, which can be
interchanged with Unix. We are interested about a Linux
script not about a line of commands. So we focus on global
analysis, which is represented by a Linux script. Knowing that
a global analysis cannot result automatically from local
analyses, the fundamental question is: what are the typical
properties which characterize an attack script (a sequence of
commands leading to faults) ?

The temporal logic seems address this question. So it is
necessary to specify the global properties. The observed user
behavior is expressed by a Linux / Unix script, and
transformed afterward in a target language. It is so necessary
to verify, at any time, the respect of the properties. This check,
refers to "model checking", was experimented with SMV
(Symbolic Model Verifier). This led to LSc2SMV (Linux
Script to Symbolic Model Verifier). This prototype/tool
allows a Linux code processing to SMV language.

The result will be verified properties if the behaviour is
normal or violated properties if the behaviour is intrusive.
Figure 1 illustrates this schema.

Fig.1 A diagram tracing our method.

A. Global properties

The global properties or anti-properties (AP) are unwanted
properties that can cause damage in our system. They can be:

• AP1: Execute some illegal commands,
• AP2: Change source or command destination,
• AP3: Execute illegal actions (parameters, etc.),
• AP4: Having infinite loop,
• AP5: Having auto-replication,
• AP6: Detain a resource infinitely …

The system specification are formalizes using the AP. They

can be expressed in proportional logic or temporal logic.
The temporal logic is used within the framework of the

reagent systems, which where the software is supposed to
maintain a relation of coherence between the input flows and
the output flows. The temporal logic allows expressing the
state evolution of a system.

“International Journal of Computer Science, Communi cation & Information Technology (CSCIT)
Copyright – IPCO-2014”

We choose the temporal logic because temporal logic is an
extension of propositional logic. Either in temporal logic,
propositions are qualified in terms of time.

The following paragraph explains how to write some of the
anti-properties AP and properties (P) using temporal logic.

AP: Execute some illegal commands
The AP considers that user can execute some illegal

commands. For example, if the user is not an administrator, he
can’t execute some commands like adduser, userdel, crontab,
etc.

P: Do not execute some illegal commands;
P = {(Ui,,Cj)/Ui ∈ U et Cj ∈ C}
where: U: set of users
C: set of illegal commands
(Ui, Cj): Ui can use Cj
Use(Ui, Cj) → (Ui, Cj) ∉ P
Some others anti-properties can be formalized such as

having auto-replication, detain a resource infinitely, etc. Due
to space limitation, others properties can be found in [12].

B. LSc2SMV

The LSc2SMV tool will convert Linux script (LSc) to an
SMV language.

A specification for SMV is a collection of properties.
Properties are specified in a notation called temporal logic.
Temporal logic specifications can be automatically formally
verified by a technique called model checking.

SMV is quite effective in automatically verifying properties.
Sometimes, when checking properties, the verifier will
produce a counterexample. This is a behavioral trace that
violates the specified property. The SMV code will be in the
form of main module ().

Table I shows the transformation in the condition and loop
cases form.

TABLE I
CONDITIONS AND LOOP CASES

Type LSc SMV

Condition if[<condition>] <stmt1>
else <stmt2> fi

if(<condition>)
<stmt1>
else <stmt2>

Case case $variable in
val1) stmt1> ; ;
...... *) <stmtn> ; ; esac

case{<cond1> :
<stmt1>
... <condn> : <stmtn>
[default : <dftlstmt>]}

Switch switch(<expr>)
<case1> : <stmt1>
breaksw
<casen> : <stmtn>
breaksw
default : <dftlstmt>
breaksw endsw

switch(<expr>){
<case1> : <stmt1> ...
<casen> : <stmtn>
[default : <dftlstmt>]}

for for var in $files ;
do

for(var = init ; cond ;
var = next)
<stmt>

while while condition ; do
<stmt> done

-

The indirect transformation is based on properties to verify

in Linux script.

Some other conversion in the file name or in the folder
name, in arrays, in expressions cases, in functions … can be
given. More details can be found in [12].

C. Observed Behavior Analysis

Algorithm in figure 2 gives the user behavior type. The
output of this algorithm is the behavior type. There are two
inputs: Φ, the anti-properties, and β, the observed’s user
behavior.

Fig.2 Algorithm for analyzing the observed behavior

In anomaly detection of user behavior, we need to

distinguish between normal and intrusive behavior. So we
analyze the observed user behavior.

The basic action of anomaly detection is to compare the
observed user behavior and the anti-properties. Two cases
appear in the algorithm:

1) The observed user behavior satisfied one or many
anti-properties.

2) The observed user behavior doesn’t satisfy any anti-
properties.

The first case represents the intrusive behavior. The second
case represents the normal behavior. In fact the user script
typed is an authorized script.

Let’s: β the observed user behavior
φ an anti-property
Φ a set of anti-properties
β |= Φ : the observed user behaviour satisfy all defined

anti-properties
β |= φ : the observed user behaviour satisfy a anti-property;

In this case, we should verify the other properties because we
can have :

• β |= Φ : the observed user behaviour don’t satisfy all
defined anti-properties. The observed user behaviour is
an authorized behaviour.

• β |= Φ : the observed user behaviour satisfy all defined
anti-properties. The observed user behaviour is an
intrusive behavior.

Input: β and Φ

Output: Behavior type

1 begin

2 if β satisfied AP then

3 Forbid β

4 else

5 Authorized behavior

6 end

7 end

“International Journal of Computer Science, Communi cation & Information Technology (CSCIT)
Copyright – IPCO-2014”

IV. TLID: TOOL FOR LINUX INTRUSION DETECTION

The TLID architecture can survey a user and analyze his
behaviour. TLID can do a global analysis between users.

A. Survey a user

There are two solutions to survey a user:
• The first solution consists in using the
file .bash_history. But this file cannot give a
strengthened and real-time history because when you
use other shell, like csh,, this method cannot save the
history. Either when you tape kill -9.

• The second solution is to develop a patch. It consists to
modify file system in Linux, which are bashhist.c,
histexpand.c, histfile.c, history.h and history.c. We do
this because Linux is an open source (to obtain the
patch e-mail : bentekaya.ines@voila.fr).

You can choose a user and we obtain the user’s observed

behaviour. You can either choose a user and a day, shown in
figure 3, and we obtain the user’s observed behaviour in this
day. The result is composed by time, process identifier (PID)
and commands.

B. Analyse user behaviour

After survey a user, you can choose a property to verify. In
this example, we choose to verify the service deny in figure 4.
The button LSc2SMV became enabling. When we click below,
we obtain the SMV file. This file contains the verification of
every actions do by selected user in the chosen day. It consists
to verify the specified properties. We choose ``Prop|Verify
all'' to verify if the properties we specified in fact hold true or
false for all time. If the property should be false, a
counterexample appears in the trace page.

Intrusion scenario Sc between users can be defined as:
Sc = {A, V, S} with:
A: an attacker
V: a victim
S = {s1, s2… sn}: a set of steps
Every step is a sequence of commands with their

parameters. The next paragraph shows an example of scenario.
It have been developed and tested in Linux Red Hat Enterprise
version 5 and we use TLID and SMV for verification.

We develop an example of denial of service which is a fork
bomb. The code in figure 3 is the following:

[ines@localhost tmp]$ function testb()
{
testb|testb &
} ;testb
It works by creating a large number of processes very

quickly in order to saturate the available space in the list of
processes kept by the computer's operating system. If the
process table becomes saturated, no new programs may start
until another process terminates.

The generated SMV code is given by figure 4. The
properties to verify is called deny. We choose ``Prop|Verify
all'' to verify deny. The result is given by figure 5. We have a

violated property (false value) because the behaviour is
intrusive.

Another scenario consists of sending many mail from user
ines to another user to saturate his mail. In this case, the user
troismille cannot access to his e-mail. The scenario is given by
figure 6.

Using TLID, we choose the anti property: Having infinite
loop. If we don’t know how a property to choose, we can
mark all checkbox. The result is given by figure 7. The
behaviour is intrusive.

V. CONCLUSIONS

In this paper, we are interested by attacks using Linux
commands. We have proposed a new method for anomaly
detection of user behavior. It exploits model checking to
verify the correctness of our system. It combines security field
with formal verification. This method is applied to distinct
normal user behavior from intruders’ behavior.

The user’s observed behaviour is deduced from Linux
terminal. We are interested about a Linux script not about a
line of commands to perform a global analysis. Knowing that
a global analysis cannot result automatically from local
analyses, the fundamental question is: what are the typical
anti-properties which characterize an attack script?

We choose to transform these properties into temporal logic.
We exploit model-checking to automatically verify if a given
user behaviour satisfy or not some properties. This led to the
TLID tool development. We give some experimental results.

There is another attacks group which can be named
unknown attacks. In this new group, attacks could cause the
intrusion detection systems crash and thus incomplete testing.
It becomes clear that present approaches to evaluate intrusion
detection system are limited to some known attacks.

We divide our future work into two main parts: refine and
improve attacker competence and extend scenario to include
multi-attacks and equivalent attacks.

REFERENCES
[1] J. P. Anderson, “Computer Security Threat Monitoring and

Surveillance,” Technical report, Washing, PA, James P. Anderson Co.,
1980.

[2] D. Powell and R. Stroud, “Conceptual Model and Architecture of
MAFTIA”, Eds., MAFTIA (Malicious and Accidental Fault Tolerance
for Internet Applications) project deliverable D21, LAAS-CNRS
Report 03011, 2003.

[3] C. Matheï,. (2004) “Ouverture des réseaux IP d’entreprise : risques ou
opportunité ?” [Online]. Available:
http://www.awt.be/contenu/tel/res/IPforum23-04_Réseau unifié et
sécurisé.pdf.

[4] B. E. Cloete and L. M. Venter, “A comparison of Intrusion Detection
systems” Computers & Security, vol 20, Issue 8, pp. 676-683, Dec.
2001.

[5] A. Patrizio. (2006) “Linux Malware On The Rise. ” [Online]. Available:
http://www.internetnews.com/devnews/article.php/3601946.

[6] M. Santana, “Chapter 6 - Linux and Unix Security, Computer and
Information Security” Handbook 2009, pp. 79-92.

[7] Koral Ilgun , Richard A. Kemmerer , Phillip A. Porras. “State
Transition Analysis: A Rule-Based Intrusion Detection Approach. ”
Journal IEEE TRANSACTIONS on Software Engineering, Vol. 21, No.
3, pp. 181-199, 1995.

“International Journal of Computer Science, Communi cation & Information Technology (CSCIT)
Copyright – IPCO-2014”

Fig.3 User’s observed behaviour in a chosen day

Fig.4 The generated SMV code

“International Journal of Computer Science, Communi cation & Information Technology (CSCIT)
Copyright – IPCO-2014”

Fig.5 Verification result

Fig.6 An example of having infinite loop scenario

Fig.7 The result of having infinite loop scenario

[8] K. Ilgun. “USTAT - A Real-time Intrusion Detection System for
UNIX,” Master's Thesis, University of California at Santa Barbara,
Nov. 1992.

[9] M. Schonlau, W. DuMouchel, W. H. Ju, A. F. Karr, M. Theus and Y.
Vardi. “Computer Intrusion: DetectingMasquerades” Statistical
Science, Vol. 16, No. 1,pp 1–17, 2001.

[10] T. Lane and C E. Brodley. “Sequence matching and learning in
anomaly detection for computer security.” In AAAI Workshop : AI
Approaches to Fraud Detection and Risk Management, pp. 43–49.
AAAI Press (1997).

[11] M. Theus and M. Schonlau. “Intrusion detection based on structural
zeroes.” Statistical Computing and Graphics Newsletter 9, pp. 12–17,
1998.

[12] I.B. Tekaya, M. Graiet, and B. Ayeb. Intrusion detection with symbolic
model verifier. In the Sixth International Conference on Software
Engineering Advances, ISBN: 978-1-61208-165-6, pages 183–189
(2011).

