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Abstract—This paper presents a nonlinear robust control
based on Super Twisting algorithm for quadrotor’s attitude
tracking and stabilization. The model used in the control design
is obtained using the quaternion representation with the aim
to avoid singularities. The finite time convergence and stability
of the closed loop system is proved through Lyapunov function
candidate. The experimental results show the robustness and
finite time convergence of the control in presence of parameters
uncertainties and external disturbances.

Index - Super Twisting algorithm, quaternion representation,
Lyapunov stability, finite time convergence, quadrotor plateform.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are a part of the future.
They are being used more often for military and civilian
purposes such as traffic monitoring, patrolling for forest fires,
surveillance, and rescue, in which risks to pilots are often
high.
The most used class of the UAV is the quadrotor, it has an
evident advantage comparing to the other classes for various
applications because of its vertical landing/take-off capability,
payload, great maneuverability and easy to manufacture.
For this, the quadrotor becomes an interesting area of
research. Various methods are developed to control the
quadrotor position. We find the linear algorithms which deal
with the system locally around its equilibrium point as LQR
[1] and PID [2].
Since the quadrotor is an underactuated system, that is it has
six degrees of freedom to be controlled and only four inputs,
and highly coupled model, nonlinear controls were taken into
consideration to deal with this latter. Serval approaches are
developed in this direction such as backstepping [3], sliding
mode control [4], Super twisting control [5] and adaptive
backstepping [6]. The used representation in most researches
is based on Euler angle which leads to control loss when the
quadrotor passes by the position (φ = π/2 or θ = π/2 or
ψ = π). We call this problem singularities. Quaternion based
representation is the solution to avoid this problem, there
are researches that have take attention to this representation
where they developed various control such as chen and Lo
[7] , Taybi [8] and Wu Shunan [9].

This paper presents the second order sliding mode control
Super Twisting algorithm (STWA) for quaternion-based

spacecraft attitude tracking and stabilisation. In our work
we define firstly in section II, the quadrotor model using
the quaternion representation associated with the fixed and
mobile frames, where we get the kinematic and dynamic
equations.
in section III, we compute the control law by defining a
sliding variable and using the STWA.
Finally, we present experimental results that show the
validation of the theoretical conclusions about stability,
robustness and finite time convergence.

II. MATHEMATICAL MODEL OF QUADROTOR

The quadrotor consists of a rigid cross airframe with four
individual rotors as seen in Fig1. The front and rear rotors,
numbered 1 and 3, rotate counterclockwise (positive about the
z-axis), while the left and right rotors, numbered 2 and 4,
rotate in a clockwise direction. Vertical motion is achieved
by increasing or decreasing the speed of each rotor by the
same proportion. The roll motion is controlled by increasing
the thrust of rotor 2 (4) and decreasing the thrust of rotor
4 (2) to obtain a positive (negative) roll to the right (left).
The pitch motion is achieved similarly by differential speed
between rotors 1 and 3. The yaw motion of the quadrotor is
achieved by adjusting the average thrust of the clockwise and
counterclockwise rotating rotors. When a yaw motion in the
positive direction is desired for example, the rotor pair 1 and
3 increase by the same proportion, while the rotor pair 2 and 4
decrease by the same proportion. This will maintain the same
overall aircraft thrust without pitching or rolling the aircraft.

To get the attitude equations of the UAV there are different
ways. In our work we are intersting by the quaternion repre-
sentation to avoid singularities. The quaternion is given by:

Q = q0 + q1i+ q2j + q3k (1)

where q0 is a scalar and q1i+ q2j + q3k is a vector.
The quaternion is described by the following propriety :

‖Q‖ = q20 + q21 + q22 + q23 = 1 (2)

Let us consider the quadrotor as being a rigid body under
external forces applied to its center of mass, the dynamic
equation referred to the body coordinates system under the
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Fig. 1. Quadrotor model

Newton-Euler formulation is :[
mI3×3 0

0 J

] [
V̇
ω̇

]
+

[
ω ×mV
ω × Jω

]
=

[
uz
u

]
(3)

Using the kinematic and dynamic equations, quaternion rep-
resentation are given by :

Ṗ = q ⊗ V ⊗ q̄ (4)

mV̇ = −mgzb + q ⊗

 0
0
uz

⊗ q̄ − [ω×]mV (5)

Q̇ =
1

2
S(Q)ω (6)

ω̇ = J−1(−[ω×]Jω + u+ d) (7)

where d is the bounded disturbance.

S(Q) =

[
q0I3×3 + [q×]
−qT

]
(8)

[q×] is a skew matrix defined by :

[q×] =

 0 −q3 q2
q3 0 −q1
−q2 q1 0

 (9)

V = [vx vy vz] is the translation velocity.
ω = [ωx ωy ωz] is the angular velocity vector;
ū = [u uz] = [u1 u2 u3 uz] is the control vector, that
are the torques and the thrust forces generated by the four
DC motors and is given by :

u1 = τφ = lb(Ω2
2 − Ω2

4) (10)
u2 = τθ = lb(Ω2

1 − Ω2
3) (11)

u3 = τψ = ρ̄(Ω2
1 − Ω2

2 + Ω2
3 − Ω2

4) (12)
uz = b(Ω2

1 + Ω2
2 + Ω2

3 + Ω2
4)

Ωi are the angular speed of the four rotors respectively.

Let us introduce now the motor dynamique which contains
electrical and mechanical equations. This model is composed
of the series of a resistor R[Ω], an inductor L[H] and a
voltage generator e[V ]. The resistor represents the Joule loss
due to the current flow into the copper conductor. Its value
depends on geometric and material characteristics such as
wire resistivity, length and section.

The equations describing the motor are given by :

v =
di

dt
+Ri+KeΩ (13)

JmΩ̇ = Cem − Cr (14)

The inductor part is neglected because it is small and the
electric part is so faster then the mechanical one; so the
model will be as :

v = Ri+KeΩ (15)

JmΩ̇ = −KMKe

R
Ω +

KM

R
v (16)

v is the voltage input: the real input of the system, KM ,Ke

are mechanic motor constant and electric motor constant
respectively and R is the motor resistance.

III. CONTROL DESIGN

To design the control law, we use the second order sliding
mode algorithm called Super Twisting. The control goal is to
get a good performance in term of stabilisation and attitude
tracking.
Let consider the following sliding variable :

s = eω + λeq (17)

Where λ = [λq1 λq2 λq3] is a constant gain vector.
eq the quaternion error given by :

eq = q − qd (18)

qd is the desired position in the quaternion frame.
eω is the angular velocity error.

eω = ω − ωd (19)

ωd is the desired angular velocity.

To complete the control design we use two properties
related to the quadrotor motion equation that is given as
follow [7] :
Property 1 :
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The matrix S(Q) has the following properties :

S(Q)TS(Q) = I3×3

‖S(Q)‖ = 1
d

dt
[S(Q)T Q̇] = S(Q)T Q̈

‖ω‖ = 2 ‖S(Q)‖

Using (3) and the previous properties, the desired angular
velocity can be expressed as follow :

ωd = 2S(Q)T Q̇d (20)
ω̇d = 2S(Q)T Q̈d (21)

So the dynamic of sliding variable can be written as :

ṡ = ω̇ − ω̇d + λ(q̇ − q̇d) (22)

The super twisting controller is given as follow :

u = J(J−1[ω×]Jω−J−1d+ω̇d−
1

2
λS(Q)ω+λq̇d+z) (23)

Where z is the super twisting correcting term expressed by:

z = −k1 |s|
1
2 sign(s)− k2

∫ t

0

sign(s(τ))dτ + ν (24)

Where k1 = [k11 k12 k13] and k2 = [k21 k22 k23] are
positive gains.
The closed loop sliding variable by introducing the control
(23) is rewritten as :

ṡ = −k1 |s|
1
2 sign(s) + µ (25)

µ̇ = −k2sign(s) + % (26)

% = ν̇ represents the dynamic of parameter uncertainties and
external disturbances.

IV. STABILITY ANALYSIS

To analyse the stability of the closed loop sliding variable,
we propose the following state vector :

[x1 x2] = [s µ] (27)

Considering this variable changement, (25,26) can be
expressed as :

ẋ1 = −k1|x1|1/2sign(x1) + x2 (28)
ẋ2 = −k2sign(x1) + %

We used the follwing Lyapunov function candidate to
demonstrate the stability of the closed loop system [15]:

V (x) = 2k2|x1|+
1

2
x22 +

1

2
(k1|x1|1/2sign(x1)− x2)2 (29)

This function is continuous and diffrentiable except at x1 = 0.
The equation (29) can be rewritten on quadratic form as :

V (x) = ζTPζ (30)

Where
ζT = [|x1|1/2sign(x1) x2] (31)

P =
1

2

[
4k2 + k21 −k1
−k1 2

]
(32)

Using the theorem defined in Morino’s paper [15] we find
that :

λmin(P )||ζ||22 ≤ V (x) ≤ λmax(P )||ζ||22 (33)

Where ||ζ||22 = |x1|+ x22 is the Euclidean norm of ζ.
λmin λmax are respectively the minimum and maximum
eigenvalues of the matrix p.
The derivative of Lyapunov candidate function is :

V̇ (x) = −|x1|−1/2ζTQζ + %RT ζ (34)

Where RT = [−k1 2]
We propose the bounds of perturbation defined by the
following :

%(t, x) ≤ hmax (35)

Where hmax is a positive gain.
Using (35) we find :

V̇ (x) ≤ −|x1|−1/2ζT Q̄ζ (36)

Where

Q̄ =
k1
2

[
2k2 + k21 − 2hmax −k1
−(k1 + 2hmax

k1
) 1

]
(37)

V̇ is negative definite if Q̄ > 0. that is true if :

k1 > 0 (38)

k2 >
hmax‖R‖

1
2k

2
1

(39)

We have

|x1|1/2 ≤ ‖ζ‖2 ≤
V 1/2(x)

λ
1/2
min{P}

(40)

From (33), (36) and (40) we find that :

V̇ ≤ −γV 1/2(x) (41)

Where

γ =
λ
1/2
min{P}λmin{Q̄}

λmax{P}
(42)

The previous result guarantees convergence of the vector
[s µ] to zero in finite time that is given by :

Tr =
2V 1/2(x0)

γ
(43)
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V. EXPEREMENTAL RESULTS

In this work we use a Qanser platform to validate our
control. It contains a fixed quadrotor connected with a control
card (Q8 usb) and powered by an amplifier as shown in
Fig.2,3. The used sensors are encoders to mesure the angle
positions and the actuators are DC motors (Motor-Pittman
9234S004). Experimental testing has been performed using Q8
usb card in combination with Matlab-Simulink- that allows us
a real time visualisation and interaction. The four DC motors
are powered by Quanser linear voltage amplifier driven by
PWM signals.

Fig. 2. Quanser quadrotor

Fig. 3. Quanser quadrotor

We are carrying out the control signal via Simulink in block
diagram format using the physical parameters given in table I
and we obtain the following results due to many tests to show
the performances of the proposed control.
Since, we are dealing with the attitude stabilisation and
tracking of a fixed quadrotor platform, we suppose that the
thrust force uz is constante to compensate gravity force.
The gain values used in the next expirement are described in
the table II :

A. Attitude Stabilisation

Figure (4) represents the quaternion response. This test has
been realised by giving the quadrotor initial conditions that are
equivalent to a Euler angles values as it is shown in figure (5).
The initial conditions are (q0 ≈ 0.96, q1 ≈ 0.2 , q2 ≈ 0.2,q3 ≈

TABLE I
QUANSER PARAMETERS

parameter description value Unit
m mass 2.85 Kg
l distance between Pivot to each Motor 0.1969 m
b thrust factor 2.98e-6 N/V
ρ̄ drag factor 1.14e-7
Jx Roll inertia φ 0.0552 kgm2

Jy Pitch inertia θ 0.0552 kgm2

Jz Yaw inertia ψ 0.1104 kgm2

TABLE II
CONTROL GAINS

parameter value parameter value parameter value
λq1 2 k11 200 k21 40
λq2 2 k12 200 k22 50
λq1 1.5 k13 150 k23 20

−0.1) corresponding to (θ = 18◦; φ = 18◦; ψ = −9◦).
The obtainted results show the power of the control in term
of stabilisation.

Fig. 4. Quaternion trajectories for stabilisation test

B. Attitude Tracking

In this experiment, we give the machine a desired tra-
jectories with sinusoidal form. Figures (6,7) show the high
performance of the control in term of tracking. The small
oscillations in the response trajectories are due to the sensor
noise and drift.

C. Robustness Test

Figures (8,9) present the quaternion and the corresponding
Euler angles tracking responses. Where we applied a manual
external force considered as external perturbations.
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Fig. 5. Corresponding Euler angles trajectories for stabilisation test

Fig. 6. Quaternion trajectories for tracking test

The disturbances was applied at t = 15s on the θ orientation,
at t = 30s on the φ axes and at t = 45s in both orientations.
The effectiffness of the super twisting appears in this expe-
rience. In fact, we clearly see that there is a good rejection
of the external diturbances and a quick reaction, which means
that the control signal intervene so that the output follows the
desired trajectory.

D. Singularities Avoidance Test

To show the powerful of quaternion representation with
respect to Euler angles repesenation, we give to the quadrotor

Fig. 7. Corresponding Euler angles trajectories for tracking test

Fig. 8. Quaternion trajectories for robustness test

initial conditions that cause singularities. That is, θ,Φ = π
2

and ψ = π.
However, the Quanser experimental plateform is a fixed
quadrotor, the physical limits due to this material don’t allow
to reach these angles except for the yaw angle.
This is why, we give the simulation results assiociated with
the control based on Euler angles representation Fig.10 and
with the quaternion representation Fig.11.
Experimental results only concerns the yaw angle and are
given in Fig.12,13.
From these figures, it appears that the control based on quater-
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Fig. 9. Corresponding Euler angles trajectories for robustness test

nion represenattion can avoid sigularities, this overcomes the
principal inconvenience for quadrotor control.

Fig. 10. Euler angle trajectories with control based on Euler representation

VI. CONCLUSION

In this paper, Super Twisting algorithm based on quaternion
has been designed. By this strategy we can avoid singularities,
that means, the control can allow the motion of the UAV in
all orientation of space, unlike the Euler angles, that cause
a control loss when φ, θ = π

2 and ψ = π. An experimental
validation has been done using a Quanser platform. The
experimental results prove the stability, roubustness and hight
effectivness of the proposed algorithm.

Fig. 11. Euler angle trajectories with control based on quaternion represen-
tation

Fig. 12. Yaw trajectories with control based on Euler representation

Fig. 13. Yaw trajectories with control based on quaternion representation
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