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Abstract— This paper presents an enhanced methodology for detecting and classifying bearing faults in rotating 

electrical machines using a combination of Short-Time Zero Crossing Rate (STZCR) and Self-Organizing Maps (SOM). 

STZCR is applied to vibration signals to capture transient variations indicative of bearing defects. From this signal, 

multiple time-domain, frequency-domain, and fault-related frequencies are extracted. To optimize classification 

performance and reduce data dimensionality, two feature selection techniques—ReliefF and Genetic Algorithms—are 

implemented. The selected features are then classified using a SOM neural network, which effectively maps high-

dimensional data into topological clusters representing different fault types. Experimental validation is performed using 

a standard bearing dataset under variable load conditions. The results show that frequency-domain features derived 

from STZCR provide more relevant information for classification, and that combining feature selection with SOM 

enhances the accuracy and efficiency of the diagnosis process. Furthermore, the use of feature selection—particularly 

the ReliefF method—significantly improves classification accuracy and overall diagnostic performance. The proposed 

approach demonstrates robustness and suitability for real-time bearing fault monitoring. Future work will focus on 

real-time implementation and fault severity analysis. 
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I. INTRODUCTION 

Electrical rotating machinery is very common in wide range of industrial applications, playing a critical role in 

industries such as petrochemicals, power generation, and manufacturing. Key components like turbine-compressors 

in petrochemical plants or reactor coolant pumps in nuclear power plants rely on these machines for continuous, 

high-performance operation. Failure to detect early-stage faults in these systems can result in severe financial losses 

due to production downtime and, in some cases, even pose risks to human safety. 

Bearing failures are one of the leading causes of breakdowns in rotating machines, accounting for approximately 

41% of all machine failures [1]. Therefore, early detection of bearing defects is essential to prevent catastrophic 

failures and enhance system reliability. Various techniques for bearing fault detection and diagnosis (FDD) have 

been proposed in the literature, with vibration analysis being the most widely used and recognized method [2]. 

Vibration analysis covers numerous signal processing techniques [3,4], such as time-domain analysis, which 

monitors the variation of statistical parameters [5]. Frequency-domain analysis is also commonly employed, with 

the Fast Fourier Transform (FFT) being used to identify fault-related frequency components in the vibration 

spectrum [6]. However, these techniques are often inadequate for analyzing non-stationary signals, which are 

typically associated with machinery defects. Consequently, time-frequency domain techniques have been developed, 

including the Short-Time Fourier Transform (STFT) [7], the S-transform [8], Empirical Mode Decomposition 

(EMD) [9], Discrete Wavelet Transform (DWT), Continuous Wavelet Transform (CWT), and Wavelet Packet 

Transform (WPT) [10]. 

Rather than directly extracting features from the raw vibration signal, several transformation methods are applied 

to pre-process the data, improving fault detection and making the feature extraction process more efficient by 

reducing the complexity of the data. For instance, envelope analysis [11] demodulates high-frequency components 
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to uncover fault-related low-frequency modulations, making it easier to detect localized defects in bearings. Another 

method, the Short-Time Zero Crossing Rate (STZCR) technique particularly effective for detecting rapid changes in 

non-stationary signals [12]. STZCR measures the rate at which a signal crosses the zero axis within a short time 

window, capturing transient variations in the signal caused by faults. Its simplicity, combined with its ability to 

detect sudden variations without the need for prior knowledge of specific fault frequencies, makes it highly 

advantageous for real-time applications. Moreover, STZCR reduces the amount of data needed for fault 

classification, as it focuses on key transitions in the signal, leading to a faster and more efficient fault detection 

process. 

Accurate fault detection and severity assessment require an automatic decision-making process to classify 

extracted features into different health condition categories [13]. To achieve this, several AI-based classification 

methods have been widely explored. These include traditional methods like Support Vector Machines (SVM) [14], 

and fuzzy logic systems [15]. In addition, various artificial neural networks have been applied, such as Multi-Layer 

Perceptron (MLP) [5], Radial Basis Function (RBF) networks [16], and Convolutional Neural Networks (CNNs) 

[17]. Self-Organizing Maps (SOM), an unsupervised neural network, have also been employed for clustering and 

fault classification [13,18]. These techniques have gained attention for their ability to improve overall accuracy and 

robustness in fault detection systems. 

Fault detection based on AI-techniques can be hindered by noise and false alarms. Combining multiple feature 

extraction methods improves detection accuracy by capturing diverse fault signatures, but this also increases 

computational complexity [19]. To counter this, feature selection filters out the most relevant information, 

enhancing classifier accuracy while reducing processing time, making the system more efficient and suitable for 

real-time applications. 

This paper introduces an innovative technique for bearing fault detection that integrates the Short-Time Zero 

Crossing Rate (STZCR) as a feature extraction method with a Self-Organizing Map (SOM) neural network for 

classification. To optimize the performance of the SOM classifier, feature selection techniques such as ReliefF and 

Genetic Algorithms are employed, ensuring the most relevant features are utilized for improved accuracy and 

effectiveness. 

The structure of the paper is as follows: Section II outlines the framework of the proposed automatic bearing fault 

detection system. Section III details the experimental setup and presents the results obtained. Finally, Section IV 

concludes the paper and discusses directions for future work. 

II. PROPOSED FAULT DIAGNOSIS SYSTEM 

The proposed fault diagnosis system shown in Fig. 1 is centred around the analysis of vibration signals. These 

signals are collected using accelerometers from test motors operating under various bearing conditions. The 

methodology consists of three key stages: feature extraction, feature selection, and classification. 

 Feature Extraction: 

The Short-Time Zero Crossing Rate (STZCR) is derived from the vibration signal, providing a basis for extracting 

relevant features in both the time and frequency domains. 

  Feature Selection: 

To enhance the diagnostic process and reduce the dataset size, two feature selection methods are applied: ReliefF 

and Genetic Algorithms (GA). These techniques help identify and retain the most informative features for accurate 

classification. 

 Classification: 

The final stage of the process involves the use of a Self-Organizing Map (SOM) neural network, which serves as 

the classifier for the extracted and selected features. 

A. Short Time Zero-crossing Rate 

The zero-crossing rate (ZCR) measures how often the amplitude of a signal waveform crosses the zero line, either 

from positive to negative or vice versa [12]. This rate provides an indication of the frequency content of the signal, 

making it a useful tool in estimating its fundamental frequency [20].   
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Since the number of zero crossings per second is twice the signal's frequency, ZCR indirectly conveys valuable 

frequency information that can be very relevant for bearing faults diagnosis.  

 
Fig. 1  Proposed Bearing Fault detection scheme 

 
The zero-crossing rate of a given signal s(n) can be defined by the Equation (1). 
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Where sgn( )  is the sign function defined in Equation (2). 
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To perform short-time analysis, the vibration signal is segmented into shorter frames by applying a windowing function. Each 
segment undergoes ZCR calculation, allowing the technique to capture changes in the signal’s frequency content over time.  

B.  Features Extraction 

After Performing the STZCT signal from the vibration signal, various statistical and frequency domain features are extracted 
from the STZCR to serve as fault indicators. These features provide critical insights into the signal characteristics, helping in the 
detection and diagnosis of bearing faults. 

1)  Statistical Features:  these features are sensitive to impulse faults [13]. In this study, ten (10) statistical parameters (T1–

T10) are extracted from the STZCT signal. The mathematical expressions for these parameters are provided in Table I. 

2)  Frequency Domain Features:  Frequency domain analysis offers an alternative representation of a signal, uncovering 

information that might not be apparent in the time domain [2]. Ten (10) statistical features (F1–F10) are extracted from 

the frequency spectrum of the STZCR signal, as defined in Table I. 

3)  Bearing Fault-Related Characteristic Frequencies:  These characteristic frequencies are crucial for diagnosing bearing 

faults. They include the Rotating Speed Frequency (RSF), which corresponds to the bearing's rotating speed, the Ball-Pass 

Frequency of the Outer Ring (BPFO), which occurs when balls pass over a defect on the outer ring, the Ball-Pass Frequency 

of the Inner Ring (BPFI), associated with balls passing over a defect on the inner ring, and the Ball-Spin Frequency (BSF), 
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which is the frequency at which the balls spin around their own axis. The mathematical expressions for these characteristic 

frequencies are presented in Table II. 
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TIME AND FREQUENCY DOMAIN FEATURES 
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where s(k) is a spectrum for k = 1,2,. . .,K, K is the number 

of spectrum lines; fk is the frequency value of the kth 

spectrum line 

TABLE II 

BEARING FAULT-RELATED FREQUENCIES COMPONENTS 

Frequency component BPFO BPFI BSF 
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Where if is the shaft speed, d is the diameter of the rolling element, and D is the pitch diameter,   is the contact angle 

C. Features Selection 

The goal of feature selection is to identify the most informative features for accurately diagnosing bearing faults, ensuring 
reliable classification [19].  In recent years, various feature selection techniques have been explored, such as Principal 
Component Analysis (PCA) [21], Sequential Backward Selection (SBS), ReliefF [22], and Genetic Algorithms (GA) [23]. Other 
popular methods include Minimum Redundancy Maximum Relevancy (mRMR) [24], Recursive Feature Elimination (RFE), and 
Mutual Information (MI), all of which help reduce data dimensionality while improving diagnostic performance by selecting the 
most relevant fault indicators. 

1)  The ReliefF Technique:   

ReliefF is an efficient feature selection method used in problems with strong attribute dependencies [25]. Figure 2 outlines the 

algorithm. 
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Fig. 2  The reliefF algorithm. 

It estimates the quality of attributes based on how well they distinguish between nearby instances. For a randomly selected 

instance (Insm) from class L, ReliefF identifies K nearest neighbors from the same class, called nearest hits (H), and K nearest 

neighbors from different classes, called nearest misses (M). The quality of each attribute is updated: if Insm and H have different 

values for an attribute, its quality decreases; if Insm and M have different values, its quality increases. This process is repeated n 

times as set by the user.  

2)  Genetic Algorithm for Feature Selection:   

Genetic Algorithms (GAs) use evolutionary principles to select optimal features. Starting with a population of random 
chromosomes, representing different feature sets, the algorithm iterates through reproduction, crossover, and mutation to generate 
new solutions. Chromosomes are evaluated based on a fitness function, aiming to minimize within-class distance and maximize 
between-class distance. Each chromosome represents selected features (1 for inclusion, 0 for exclusion). The process continues 
until the best solution, representing the optimal feature subset, is found [22]. 

D. The Self Organizing Map (SOM) 

The Self-Organizing Map (SOM) is an unsupervised neural network used for clustering and visualizing high-dimensional data 
[26]. It performs a nonlinear, topology-preserving mapping from high-dimensional input data onto a lower-dimensional space, 
typically forming a two-dimensional map of neurons [27]. 

A SOM consists of two layers: the input layer, with one neuron for each input variable, and the output layer, organized in a 
2D grid for processing and mapping features (Fig. 3). Each neuron in the output layer is connected to all input neurons. 

 
Fig. 3  SOM Architecture 

During training, SOM adjusts its weight vectors to ensure that similar input data points activate neighboring neurons. For each 
training step, the algorithm identifies the best-matching unit (bmu) based on the smallest distance between the input vector and 
the weight vectors of all neurons: 

    min , 1,...,X W i X W i mbmu i       

where Wbmu is the best-matching unit weight vector.  

Once the bmu is identified, the weights of the bmu and its neighbors are updated using the rule: 

   ( 1) ( ) ( ) ( , ) ( ) ( )W W h i X Wii i bmu
             
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Where τ is time, ε(τ) is a learning rate and hbmu(i, τ) is defined as the neighborhood kernel function around the bmu. Usually, ε(τ) 
is a decreasing function of time and should be between 0 and 1. In this paper the Gaussian neighborhood function is chosen. 

III. EXPERIMENTAL SETUP 

The proposed fault detection method is applied to bearing fault vibration signal data obtained from the Case Western 

Reserve University Bearing Data Center [28]. In this setup, vibration signals are captured at a sampling rate of 12 kHz using 

accelerometers mounted on the motor housing at the drive end of a three-phase induction motor. The motor is coupled to a 

dynamometer, which serves as the load, as illustrated in Figure 4. 
In this work, we investigate four distinct operating conditions: normal operation (NO), outer race fault (ORF), inner race fault 

(IRF), and ball fault (BF), with a fault diameter of 0.021 inches. Each experiment is repeated under four different load conditions: 
0, 1, 2, and 3 Hp. 

The experimental data is segmented into 448 samples (112 samples per operating condition), each containing 4096 data 
points. The Short-Time Zero Crossing Rate (STZCR) is then computed, and features are extracted using a frame size of 40 
samples and a frame shift of 10 samples. A total of 24 features are calculated for each segment, resulting in a dataset with 
dimensions of 448 × 24. Two-thirds of the dataset is used to train the Self-Organizing Map (SOM), with the remaining portion 
reserved for testing. A four-class classification process is employed to evaluate the system’s performance, corresponding to the 
four operating conditions. Since SOM is an unsupervised neural network, labels are assigned to each case as detailed in Table III.  

 
Fig. 4 The experimental test rig scheme 

TABLE IIII 

DESCRIPTION OF CLASSIFICATION TASKS 

Bearing Condition Associated Labels 

Normal NOR 

Ball Fault BLF 

Inner Race Fault IRF 

Outer Race Fault ORF 

IV. RESULTS AND DISCUSSION 

 

Following the calculation of features and the construction of the dataset, three sets of extracted features were evaluated 

individually to assess their performance in fault classification. 
The histogram in Fig. 5 illustrates that the time-domain features derived from the Short-Time Zero Crossing Rate (STZCR) 

achieved a classification accuracy of 90.97%. In contrast, the bearing fault-related characteristic frequencies yielded a lower 
accuracy of 87.5%. Notably, the frequency-domain features of the STZCR produced the highest classification accuracy at 
96.52%. So it can be concluded that the frequency domain of the STZCR of the vibration signal carry a lot of information about 
the bearing condition. 
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Fig. 5 Performance comparison of features from the three features extraction methods 

These results underscore the efficacy of the frequency-domain features derived from the STZCR of the vibration signal 

in capturing relevant information regarding bearing conditions. The superior performance of frequency-domain features 

suggests that they provide deeper insights into the frequency components associated with various fault types.  

After evaluating the feature extraction techniques individually, we applied dimensionality reduction to the entire dataset 

using the ReliefF and Genetic Algorithm (GA) feature selection approaches. Both techniques were implemented to determine 

the optimal number of selected features, ranging from one to twenty-four (total number of features). 

Figure 6 illustrates the classification performance of the trained Self-Organizing Map (SOM) in relation to the number of 

features selected by these two algorithms. The analysis reveals that the optimal number of features selected is eight (8) for the 

ReliefF technique and seventeen (17) for the GA technique. Notably, both of these feature selections resulted in improved 

classification accuracy compared to the original feature extraction techniques. Specifically, the ReliefF method achieved the 

highest accuracy of 99.30%, surpassing the GA technique's accuracy of 97.92%. 

Following the training phase and evaluation of classification performance, the results of the Kohonen map (SOM) can 

also be interpreted through a two-dimensional topological network, which includes the associated labels for each class. This 

representation provides a valuable topological understanding of the training data distribution on the map and offers clear 

visualization of the inter-class distances. The proximity of the mapped classes indicates the relationship and similarities between 

different fault conditions, thereby enhancing the interpretability of the SOM model and supporting effective fault diagnosis. 

 

 

Fig. 6 Classification accuracy vs Number of selected features using ReliefF and GA techniques 

 

Figure 7 illustrates the trained Self-Organizing Map (SOM) using the features selected by the ReliefF and Genetic 

Algorithm (GA) approaches. Both SOM maps exhibit a distinct separation among the four bearing condition classes. The 

samples are clearly organized on the map into four well-defined clusters, with significant distances between them. This spatial 
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arrangement indicates the effectiveness of the selected features in capturing the underlying patterns in the data, thereby 

facilitating accurate classification of the different bearing conditions. 

a)  ReliefF b)  GA
 

Fig. 7  The obtained trained Maps. 

V. CONCLUSIONS 

This study introduces a novel methodology for detecting bearing faults in electric motors, leveraging the Short Time 

Zero Crossing Rate (STZCR) of vibration signals in conjunction with Self-Organizing Maps (SOM) and feature selection 

techniques. By integrating multiple signature analysis methods from the time domain, frequency domain, and bearing fault-

related frequencies, our approach enhances fault detection and classification under variable load conditions. The experimental 

results demonstrate that the combination of STZCR and SOM, particularly when enhanced by feature selection, significantly 

improves the quality of the learned map and reduces training time.  

Future work will focus on implementing this automatic bearing fault detection system in real-time applications and 

exploring its capabilities for fault severity evaluation. 
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