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Abstract— This paper is concerned with a proportional 

plus derivative (PD) state feedback control problem for 

discrete and continuous descriptor linear systems. We aim to 

design a (PD) state feedback controller which guarantees the 

stability of closed-loop system. 

The existence of such a controller is determined by developing 

a necessary and sufficient condition in terms of LMIs. Then, 

the desired PD state feed-back controller is given in the 

explicit expression. The proposed approaches’ applicability is 

illustrated by an example of simulation. 

 

Keywords—descriptor linear systems; proportional plus 

derivative state feedback;  linear matrix inequality. 

 
 

I. INTRODUCTION 

 

The Singular systems, also called descriptor system, 

implicite systems or algebro differentiel systems present an 

important class of systems with a great practical and 

theoretical interest. This class was firstly used for the 

modelization of a large range of systems that can not be 

modelized by the usual state representation. Indeed, 

descriptor systems chow both dynamic relations and 
algebraic ones. This augmentation allows adding static 

relations in the modelization of process that have an 

impulsive behavior or also non causal process. Besides, 

descriptor systems keep the systems physical significations 

[1]. [1, 2] Singular systems are used in electric, chemical 

and robotic fields. Since 1970, many researches were 

concentrated on descriptor systems. A several number of 

fundamental results obtained for ordinary systems, have 

been extended for singular systems such that: observability, 

controllability stability, elimination of impulse behavior, 

pole assignment, [2-7]. A great interest in the area of 

stability, stabilization techniques and robustness for 

descriptor systems has been noted [8-12]. Interested readers 

may refer to [13], where a comparison between, the concept 

of Lyapunov functions and the theory of differential 

inequalities is established for singular system. In the work 

of [14], a problem of regularization by state and output 

predictive controllers is treated firstly. Then a stabilization 

procedure of the regularized system is given and a 

computation of controller gains through linear matrix 

inequalities is developed. In [15], a proposed approach 

based on GLE is adopted under a set of matrix inequality 

for the admissibility of discrete singular systems. This last 

property includes the stability as well as the impulse 

freeness and the regularity. Other works have been 
interested in the robust stabilization [16, 17]. [18] has 

developed the robust stability of singular delayed systems 

by introducing the concept of generalized quadratic stability. 

A strict LMI design approach is proposed and an explicit 

expression for robust state feedback control law is given. 

Moreover, in [19], the robust stabilization problem is 

solved through state feedback controller where the 

parameters uncertainties appearing in both the state and 

input matrices and the concepts of generalized quadratic 

stability and stabilizabilty are introduced. . In [20], to 

reduce the conservatism of the stabilization quadratic, a 

PDL approach is used to solve the robust static output-

feedback admissibility problem, for the descriptor systems 

case. The aim of this work is to study a proportional plus 

derivative (PD) state feedback controller for a nominal 

continuous descriptor system, satisfying the closed-loop 

systems stability. Based on this result, a necessary and 
sufficient condition for the solvability of this problem is 

obtained in terms of linear matrix inequality LMIs. 
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This present study has a different aspect from those were 

developed in literature for singular systems stabilization. 

The different consists on the controller structure, since it is 

the first work that dealing with the PD regulator case and 

on the stabilization technique. This latter exploits the 

stabilization concept for the standard usual systems. The 

point is to determine a PD controller that translating the 

study from a descriptor system to a standard one. Then, we 

look for a necessary and sufficient condition under a LMI 

formalism witch guarantying the system stabilization. The 

paper is organized as following: The second section 

formulates the problem to be addressed in the paper. Some 
necessary and sufficient conditions for stabilization of 

descriptor linear systems via state plus state derivative feed-

back are presented in section three where the both 

continuous and discrete cases will be treated. An illustrative 

example is worked in section four. The last section gives 

some concluding remarks. 

  
Notations: Throughout this paper, the following notations 

will be used. For two matrices A and B, A>B means that A-

B is positive definite. 
T

A denotes the transpose of A and 
T

A


 the transpose of the inverse of A. Identity and null 
matrices will be denoted respectively by I and 0. 

 Furthermore, in the case of portioned symmetric matrices, 

the symbol  denotes generally each of its symmetric blocks 

and ( )A sym  denotes
T

A A .  

 

II. PRELIMINARIES 

 

Let’s consider the following continuous-time linear 

descriptor system described by:  

      ( ) ( ) ( ) Ex t Ax t Bu t                                          (1)                                                     

Where ( )
n

x t  , ( )
m

u t   and ( )
r

y t   are its state, 

control input vector, and measurement output respectively. 

,
n n

E A



n m

B


 , and 
r n

C


 are constant matrices 

of appropriate dimensions. The matrix E may be singular. It 

is assumed that ( )rank E q n  . 

III. STABILIZATION PROBLEM 

 

A. Stabilization condition for continuous –time descriptor 

systems. 

 

We consider the state proportional plus derivative control 

expressed as: 

                ( ) ( ) ( )p d
u t K x t K x t                                  (2) 

Where , m n

p dK K
 are matrixes of appropriate 

dimensions. The closed loop system is given by: 

) )( ( ) ( ( )
d p

E BK x t A BK x t                            (3) 

We aim to design a PD state feed-back control of the form 

(2) such the gain pK  acts on the stability of the system and  

dK  make the expression (3) well defined. In other words 

find a gain dK , which allows us to write the equation (3) as 

follows:                                                                                                                               
1

) )( ) ( ( ( )
d p

x t E BK A BK x t


                         (4)                                            

Thus, the stabilization study of system (1) becomes a study 

of usual standard system. So we shall avoid studying the 

concepts of singular systems such as the regularity, the 

impulsiveness behavior and the admissibility. 

Let us introduce the following definition, where the 

stability is stressed under the Lyapunov sense.    

 

Definition1: System (1) is SD-stabilizable if there exist 

matrix pK  and
dK  of appropriate dimensions and positive 

definite symmetric P such that: 

    
1
( ) ( ) ( ) 0( ) T T

d p p dE BK A BK P P A BK E BK
 

             (5)   

This definition supposes that system (4) is well defined, i.e 

that matrix )( 
d

E BK is full rank. Consequently 

matrix ( )
p

A BK   is also full rank. 

1.  Stabilization for a Nominal Descriptor System  

In this section, a necessary and sufficient condition for the 

solvability of PD state feedback controller is given in terms 

of linear matrix inequalities. The theorem below follows 

directly from the previous definition. 

 

Theorem1: the following statements are equivalent: 

i)  System (1) is SD-stabilizable.  

ii) There exist a positive definite matrix Y and matrices F, 

1 2andR R  of appropriate dimensions such that: 

                     

1 1 1 2

2 2

(6)0
      


    

 
 
 

T T T T T T T T

T T T T

F A AF BR R B Y F A R B EF BR

F E EF BR R B

                  

The gain given by: 
1 1

1 2andp dK R F K R F
 

  solves 

problem.    
                                                                                                                    

Proof: by the definition1, the system (1) is SD-stabilizable 

by PD state feedback (2) if and only if the equation (5) 

checked. By taking
1

Q P


 , Q>0, and applying the 

projection lemma [3], it exist a matrix G of appropriate 

dimension such that: 

   

       

   
0

       
  
 

     

T T
T T

p p p d

T T

d d

A BK G G A BK A BK G Q G E BK

E BK G G E BK

                                                                                                                  

Taking now



T

F G , and applying the congruence 

transformation 
1 1

( , )diag G G
 

and denoting: 

1

1 2, and
T

p dY G QG R K F R K F
 

   , one gets the 

inequality (6). This completes the proof of theorem. 

 

2.  Extension to Robust Stabilization  

 

The result of the previous section can be extended to robust 

stabilization for uncertain descriptor systems with polytopic 

coefficient matrices. 

 Lets us consider the following linear uncertain descriptor 
system: 

( ) ( ) ( ) ( ) ( ) ( ) E x t A x t B u t                      (7) 

PC
Typewriter
76



Where 
n

x is the state vector, we assume that E, A and B 

are constant and respectively belong to the classes: 

 
1 1

( ) ( ) , 1, 0
E EN N

i i i i
i i

E E : E E    
 

    E =  

 
1 1

A( ) ( ) , 1, 0
A AN N

j j j j
j j

AA : A    
 

    =A  

 
1 1

( ) ( ) , 1, 0
k kN N

k k k k
k k

BB B : B    
 

    =B  

 

 
Theorem2: the following statements are equivalent: 

i)  System (7) is SD-stabilizable.  

ii) There exist a positive definite matrix Y and matrices F, 

1 2andR R  of appropriate dimensions such that: 

                     

1 1 1 2

2 2

(8)
, ,

0

      


    

 
 
  

T T T T T T T T

i

T T T T

k

F A A F B R R B Y F A R B E F B R
i i j j i j k j k j

F E E F B R R B
k j j

        , 1 , 11   j N k N
E A B

i N  

The gain given by: 
1 1

1 2andp dK R F K R F
 

  solves 

problem.                                                                                                       

Proof: The proof follows by simple convexity arguments. 

Notes that , ,
1 1 1  
  

A B EN N N

i j k i j k
i j k

Y    is a Lyapunov function for 

the closed-loop system. 

 
Remark1: compared with the result obtained in [9], for the 

robust stabilization, the necessary and sufficient condition 

proposed for the determination of the (PD) controller 

structure, is just limited for the proportional gain (
2K ). 

However, the derivative gain must be choosing from the 

beginning for the resolution of the problem. On the other 

sides, the present contribution is different for the reason 

that the both constants pK  and 
dK  will be induced by 

LMI solvers, which highlights the interest of theorem 2. 

 
B. Stabilization condition for discrete-time descriptor 

systems. 

 
In this subsection, the methodology can be extended for the 

discrete-time. 

Let a given discrete-time descriptor system be: 

( 1) ( ) ( )  Ex k Ax k Bu k       (9) 

Where ( )
n

x k , ( )
m

u k  and ( )
r

y k  are its state, 

control input vector, and measurement output respectively. 

,
n n

E A



n m

B


 , and 
r n

C


 are constant matrices 

of appropriate dimensions. The matrix E may be singular. It 

is assumed that ( )rank E q n  . 

Similar to the results obtained in the previous section, the 

(PD) state feedback law: ( ) ( ) ( 1)  p d
u k K x k K x k  

ensures the stability of the closed loop system:  

) )( ( 1) ( ( )   
d p

E BK x k A BK x k                 (10) 

where the feedback gain 
dK guarantees the invertibility of 

the expression )( 
d

E BK . 

So, if )( 
d

E BK is non singular, (10) can be rewritten as: 

1
) )( 1) ( ( ( )


   
d p

x k E BK A BK x k   

Before giving the result of this subsection, we would 

expose the preliminary definition. 

 
Definition2: System (9) is SD-stabilizable if there exist 

matrix pK  and
dK  of appropriate dimensions and positive 

definite symmetric P such that: 

    
1 1
( )) ( ) 0(( ) ( ) 

     
T

d p d pE BK A BK E BK A BK PP     (11)    

 

The solvability of the stabilization problem of the system (9) 

is given by the following theorem. 

 

 Theorem3: the following statements are equivalent: 

i)  System (9) is SD-stabilizable.  

ii) There exist positive definite matrixes P, matrices G, 

1 2andR R  of appropriate dimensions and scalar 0 , 

sufficiently large, such that: 

                     

2 2 1 (12)0
     


 

 
  

T T T T T T T T
P G E EG BR R B G A R B

P

     

                  

The gain given by: 
1 1

1 2and
 

 p dG GK R K R solves 

problem.    

Proof: According to Lyapunov stability theory 

(definition2), the closed loop system (10) is SD –

stabilizable if and only if: 

          
1 1

0
   

 
T T

E P E A PA
c c c c

   

where andc p c dA A BK E E BK                                                                                                

Applying the projection Lemma [3], it exist a matrix G of 

appropriate dimension such that:  

0
     



 

 
 
 

T T T T T TT T T T
P G E EG BK G G K B G A G K B

d d p

P

                                                                                                                  

Taking now 1 2and p dR K F R K F , the inequality (12) 

follows.  

                                                                                                                    

 

IV. NUMERICAL ILLUSTRATION 

 

To demonstrate the effectiveness and applicability of the 
proposed method of the stabilization, we provide the 

following three examples, the first one concerned a 

continuous nominal system, the second introduced the 

uncertainties and the last concerned a discrete nominal 

descriptor system. 

 

A.  Example-1 

We consider a nominal linear descriptor system with 

parameters as follows: 
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0 0 0 1 4.5 -0.5 1 0 1

= 1 0 0 , = 7 7 8 , = 0 1 1 .

0 1 0 5 3 6 1 0 1

E A B



 

  

     
     
          

 

 

We use the MATLAB Control Toolbox to solve the LMI in 

(6), we obtain the parameters of controller as follows: 

 

 -85.5927   7.2735   -144.9593 87.6802   -8.9111  147.8536

0.7641    10.4851   9.4792 , -4.4103    -3.1549  -11.6439

-15.6521  56.5848    1.3652  19.1912   -61.0209    3.1189
p dK K 

   
   
      

                                       

The following figures illustrate the time behavior of states 

of the nominal descriptor system, with an initial value of 

the state: 1 0 1( )
T

x t    . This justifies the effectiveness of 

proposed approach considering the stability criteria. 
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Fig.1 System state trajectories. 

 

B.  Example-2 

We consider the vertices of the polytopic, are given by 

triple: 

1 1 1 1 1 2 1 2 1 1 2 2

2 1 1 2 1 2 2 2 2 2 2 1

( , , ), ( , , ), ( , , ), ( , , )

, , )
( , , ), ( , , ), , , ), ( , , )

(
(


  
 
  

k i j

A B A B A B A B

A B
A B A B A B A B

E E E E
E

E E E E

where: 

1 2

1 2

1 2

0 0 2 0 0 0 2 0

0 1 0 0 0 1 0 0
,

1 0 0.8 0 1 0 0.8 0

0 0 0 0 0 0 0 0

5.4 0 0 0 6.4 0 0 0

0 4 0 0 0 4 0 0
,

1 0 3 0 1 0 3 0

0 1 0 2 0 1 0 2

1 0 1 0

0 1 0 1
,

1 0 1 1

0 1 0 1

= =

   
   
   
   
    
      

   
   
   

    
    

       

   
   
   

    
   
      

B B

E E

A A  

 

The resolution of this example shows a feasible solution 

was the following: 

 

-0.5382 -0.2097 -1.6410 0.1193 8.9776 2.2254 2.4211 0.6274
,

0.5539 0.1726 0.5413 -0.3149 1.6532 9.73013 2.5013 3.2269

   
   
      


 

 
K K pd

 

 B.  Example-3 

Consider the discrete singular system (9) with 

 

1 1

1 1

1 1

1 1 1 0.1 0.3 2

= 1 1 1 , = 0.5 3 1 , =

0 0 1 0.2 0.4 0.1

 
 

 
 
 



 



   
   
      

E A B  

Using in LMI solver, theorem (3) is applied with 20 . 

One obtains the (PD) state feedback matrix: 

 

 

59.4500 -272.3781 93.3153
,

-52.0309 237.2821 -82.4852

-3.1448 13.9595 -3.8551

2.6349 -12.8823 3.4415

 
 
 
  

 
 
 
  





d

p

K

K  

We can see in the figure2, the time behavior of states, with 

an initial value of the state: 1 0 1( )
T

x t    , that by using 

our controller synthesis procedure, that the trajectory of the 

closed loop system is stable. 
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                                    Fig.2 System state trajectories 

 

 

V.CONCLUSION 

 

The present paper provided a necessary and sufficient 

condition for the existence of proportional plus derivative 

feedback controllers for descriptor systems. It represented 
an LMI based approach to the design of PD state feedback 

controller. This result is extended for a robust stabilization 

problem. Numerical examples have shown the effectiveness 

of the proposed approaches considering the stability criteria. 
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