
  International Journal of Control, Energy and Electrical Engineering (CEEE) 

  Copyright – IPCO-2014 

 

Cascade control for nonlinear non-minimum phase system based on  

backstepping approach and input output linearization 

Monia CHARFEDDINE
#1

, Khalil JOUILI
#2

, Naceur BENHADJ BRAIEK 
#3

 

Laboratory of Advanced Systems 

Polytechnic School of Tunisia (EPT), B.P. 743, 2078 Marsa, Tunisia 
1
monia.charfeddine@gmail.com 

2
khalil.jouili@gmail.com  

  
3
naceur.benhadj@ept.rnu.tn 

 

 
Abstract—The problem of tracking control of nonlinear systems 

whose the zero dynamics are unstable is addressed in this paper.  

It is shown that, using a novel cascade structure where the 

backstepping approach is given to stabilise the internal dynamics 

and the standard input output linearization to stabilise the 

external dynamics. Assuming high-gain feedback for the external 

dynamics, a stability analysis of the global system is provided 

based on singular perturbation theory. Simulations of an 

inverted cart-pendulum illustrate the theoretical results. 

Keywords— tracking control, Non-minimum phase system, 
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I. INTRODUCTION 

In the past few years, the problem of tracking control of 

nonlinear non-minimum phase system has attracted big 

attention, due to its applications in environment. The unstable 

zero dynamics problem has been treated in the literature by 

different approaches.  

The first approaches based on input output linearization [1], 

[2]-[3] to enlarge the class of nonlinear systems where an 

input output linearization can be used [4]-[5]. In this 

contribution, Kravaris and Soroush have developed several 

results on the approximate linearization of non minimum 

phase systems [6], [7], [8]-[9]. For instance, in [8]-[9], the 

system output is differentiated as many times as the order of 

the system where the input derivatives that appear in the 

control law are set to zero when computing the state feedback 

input. In [10], the system input output feedback is first 

linearized. Then, the zero dynamics is factorized into stable 

and unstable parts. The unstable part is approximately linear 

and independent of the coordinates of the stable part. 

Moreover, an original technique of control based on an 

approximation of the method of exact input-output 

linearization was proposed in the works of Hauser and al [11]. 

In [12]-[13], the approximation presented in [11] is used to 

improve the desired control performance.  

The second approaches based on a cascade structure 

involving feedback linearization and stabilization of the 

internal dynamics has been considered in the literature. The 

system is first input-output feedback linearized, and then the 

internal dynamics are stabilized. In [14], the internal dynamics 

are stabilized using output redefinition and repetitive learning 

control. [15] addresses the problem of swinging up an inverted 

pendulum and controlling it around the upright position. The 

internal dynamics are stabilized using elements of energy 

control and Lyapunov control. In [16], a control law is derived 

based on extended linearization and predictive control. [17] 

proposes a new control law that combines between the input 

output linearization and backstepping. 

In this paper, we address the problem of tracking control of 

a single input single output of non minimum phase nonlinear 

systems. The idea here is to transform the given system into 

Brynes-Isidori normal form, then to use the singular perturbed 

theory in which a time-scale separation is artificially 

introduced through the use of a state feedback with a high-

gain for the linearized part. The integrator backstepping 

approach is introduced to generate a reference trajectory for 

stabilizing the internal dynamics [18]. The stability analysis 

for the proposed approach is based on the results of the 

singular perturbation theory [19]. 

The present paper is organized as follows: in Section II 

some mathematical preliminaries are presented. The cascade 

control law design and stability analysis are given in section 

III. Section IV gives the inverted cart-pendulum to illustrate 

the effectiveness of the proposed approach. Finally, some 

concluding remarks are provided in Section V. 

II. THEORETICAL BACKGROUND  

In this paper, we consider a single input single output 

nonlinear system (SISO) of the form: 

   

 

x f x g x u

y h x

  




 (1) 

where nx  is the n-dimensional state variables, u  is 

a scalar manipulate input and y  is a scalar  output. 

   . , .f g  and  .h  are smooth functions describing the 

system dynamics. 

A. Input output linearization 

Consider the output  xy= h  for system (1). The nonlinear 

system (1) has relative degree r  at the point 
0x if: 

 
   

0

1

0 and 1

0

k
f

k

g f

L h x x x k r

L L h x


      




                         (2) 
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So, the relative degree r  is the number of times we have to 

differentiate the output y  with respect to time before the 

input appears [19].  

If y n , then system (1) can be feedback linearized into 

Byrnes-Isidori normal form [20]: 

    1

T

f n rz h x L h x   
               (3) 

The resulting system with the transformed variables (1) can be 

written as: 

   

 

1

1

1

1, , 1

z,

i i

r r
r f g f

z z i r

z v L h x L L h x u

q

y z

 





  


  







                                  (4) 

where v is the new control law 

Thus, the control law can be written as: 

 
 

 1

r
f

r
g f

v L h x
u x

L L h x


                                                      (5) 

B. Integrator backstepping approach 

In this section, we consider the nonlinear system (1) which 

is written in the strict-feedback form given by [21], [22]-[23]: 

     

   

 

, 1,2, , 11

1

x f x g x x i ni i i i i i

x f x g x un n n n n

y h x

     


 


 

6)

where  1 2 1,2, ,
T

i ix x x x i n     , u and y are 

the thi  state variables, the system input and output are all 

assumed to be available for measurement;  .if  

and  . , 0, ,ig i n , are smooth nonlinear functions and 

0ig  . 

The aim of the control is the trajectory tracking of the output 

y  of the system (6), an error base  , 1, ,ie i n   is created 

as the difference between all the system states and their 

reference states i refx . 

 1,2, ,e x x i ni i i ref     (7)

   The most popular method for nonlinear systems in the strict 

feedback form of (6) is the integrator backstepping approach 

developed in [21]-[24]. If this approach were applied to (6), 

then it would be possible to create a generator of trajectory for 

the state vector x  in the form:   

 

 

     

1
1

1
2 1 1 1 1

1

1
, 1,2, , 11 11

x h yref ref

x f x eref ref
g

x f x g e e i ni i ref i i i ii ref gi






 




   



         


(8)

and the control law is as follow: 

    1
1 1u f x g e en nref n nn ngn

     
                   (9) 

where  y tref  is a reference trajectory at least nC , h  is a 

bijective function and 1h is nC . 
Using (8) and (9), then the error dynamics equations are as 

follows:  

 
1 1 2 1 1

, 2, , 11 1 1

1 1

e g e e

e g e g e e i ni i i i i i i

e g e en n n n n







 


        


  

 (10)

It is easy to determine that the equilibrium point 0e   is 

the unique solution of (10).  

In order to illustrate the stability of the origin 0e   of 

system (10), the following exponential stability theorem is 

introduced. 

Theorem 1 [19]: Given system (1), if there exists a Lyapunov 

function  V x and positive constants 
1 2,  and 

3  such that 

 
2 2

1 2x V x x   and  
2

3V x x  , then the origin 

is exponentially stable. 

Consider the following Lyapunov function  

2

1

1

2

n

i

i

V e


                                                                       (11) 

Therefore, the Lyapunov derivative V is 

2

1

n

i i

i

V e


         with    0, 1,2, ,i ni              (12) 

So, the origin 0e   of system (10) is globally exponential 

stable 

C. Singular perturbed system 

A singularly perturbed system is one that exhibits a two-

timescale behavior, i.e. it has a slow and fast dynamics and is 

modeled as follows [25]-[26]: 

   1 0, z, , 0F u                                         (13a) 

   2 0, z, , , 0z F u z z                                    (13b) 

 y h x                                                                    (13c) 

where m and Pz are respectively the slow and fast 

variables and 0    is a small positive parameter. The 

functions 
1F  and 

2F  are assumed to be continuously 

differentiable. 
0  and 

0z are respectively the initial conditions 

of the vectors   and  . If 0  , the dynamics of z  acts 

quickly and leads to a time-scale separation. Such a separation 

can either represent the physics of the system or can be 

artificially created by the use of high-gain controllers. 

As 0  , z can be approximated by its quasi-steady state 

 ,u    obtained by solving    1 1, ,0 , ,0 0f g u     . 

So, the reduced (slow) system is given by: 
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     

 

2 2

2

, , ,0 , , ,0

,

f u g u u

F u

      



 


                 (14) 

Note that the reduced system (14) is not necessarily affine in 

input. 

In the next theorem we establish the exponential stability of 

the singular perturbed system (13). 

Theorem 2 [19]: Assume that the following conditions are 

satisfied: 

 The origin is an equilibrium point for (13), 

  ,u  has a unique solution, 

 The functions 
1 2 1 2, , , ,f f g g   and their partial 

derivatives up to order 2  are bounded for z  in the 

neighborhood of z ,  

 The origin of the boundary-layer system (13) is 

exponentially stable for all  , 

 The origin of the reduced system (14) is 

exponentially stable.  

Then, there exists 0    such that, for all    , the origin 

of (13) is exponentially stable. 

III. CASCADE CONTROL LAW DESIGN 

In this section, an approach to the tracking control problem 

of the nonlinear non minimum phase system is proposed 

based on a singular perturbed theory and a combination of 

backstepping and input output linearization. In particular, it is 

shown that the closed-loop system can be described as an 

interconnection of two subsystems: the reduced subsystem 

and the boundary-layer subsystem. The stability analysis of 

the proposed approach is provided using the results of the 

singular perturbation theory [19]. 

A. Boundary Layer subsystem 

Consider the nonlinear system described by (1), then we 

apply the control law (3) which is given by: 

     
 

1
1

1 1

0

with

r
irr i

i ref iref r i
i

k
v y y k y y k






  


         (15) 

where  y tref  is the reference trajectory for the output,  

0   a small positive parameter, and  

 0, 1,2, , 1k i ni      are the coefficients of a Hurwitz 

polynomial [19]. 

and the internal dynamics are given by: 
  1

, , , ,
r

Q y y y 


                                              (16) 

Under the assumption  that the gains ik   are chosen large, 

such as for any choice of 0  , the closed loop is stable and 

  can be used as a single tuning parameter,  the system (15)-

(16) can be written in the form of a singular perturbed system 

(13) . So the fast state can be defined by: 

 11 , 1, ,
ii

iz y i r
                                            (17) 

If we replace (17) by (16), we obtain    

    0, , , 0Q z                                              (18) 

and also by (15), such that 

 
  

1

1 11

0

r
rr

r i iref i ref

i

z y k z z 


 



                             (19) 

with   2
T

rr
ref ref ref ref refz y y y y   

  
 

thus, (16) can be written as follows:  

 
  

1

1

1 11

0

, 1, , 1i i

r
rr

r i iref i ref

i

z z i r

z y k z z



 





 



  



  



                     (20) 

B. Reduced subsystem 

As the tuning parameter   is small, so the quasi-steady-

state assumption can be introduced. Thus, the reduced 

subsystem (QSS subsystem) when setting to zero in (18). 

Letting 0   in (17)  

1

2 0r

z y

z z




  
                                                       (21) 

we use this result and let 0   in the last equation of  (20), 

we obtain 

 
  

 

1

1 11

0

1 1 1

1 1

0

0

r
rr

r i iref i ref

i

ref

ref

z y k z z

k z z

z z

 


 



   

  

 



                (22) 

Therefore, when 0  : 

0 0
T

refz z y                                                  (23) 

The vector z  is the quasi-steady-state value of z . 

The internal dynamics depends on the output y , its derivatives 

 1
, ,

r
y y


and the small parameter  , such as:   

 
    1

0

, ,

, , , , , 0
r

Q z

Q y y

  

   




 
                      (24) 

Under the quasi-steady-state QSS assumption, the output y  

tends to refy  and the derivatives 
 1

, ,
r

y y


 tend to their 

references
 1

, ,
r

ref refy y


.   Then, the internal dynamics is 

written by  
    

1

0, , , , , 0
r

ref refQ y y    


                   (25) 

Thus, the reference trajectory 
  1

, , ,
r

ref ref refy y y


 will be 

used for the stabilization of the internal dynamics. 

   we define a novel state vector 

 1

1

T
r

n r ref refy y  



 
  

 such as the reduced 

subsystem  (25) can be written by    
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 , QSSQ u        with             
 r

QSS refu y              (26) 

   Note that it is important to include additional states 

 1
, , ,

r

ref ref refy y y


 since they are considered as independent 

variables, and the last derivative 
 r

QSS refu y  is considered as 

the control law for (26). 

To determine QSSu , we need the assumption that the internal 

dynamics (26) is written in the following strict feedback form: 

   

   

   

   

   

1 1 1 1 1 2

2 2 2 2 2 3

1

1 1 1 1 1 2

n r n r n r n r n r n r

n r n r n r n r n r n r

n n n n n QSS

f g

f g

f g

f g

f g u

   

   

    

   

  

      

           

  


 




  


 


  

         (27) 

Then, we use the integrator backstepping approach to 

determine the reference trajectory refy  and the control 

law QSSu . So, we define  1QSSy h   as a virtual output for 

the subsystem (26) and QSS refy  are the reference trajectory 

for the output QSSy . By referring to the equations (8) and (9), 

we obtain the following trajectory generator:
 

 

 

    

1
1

2 1 1 1 1
1

1 11 1

1

1
, 3, , 1

ref sref

ref ref ref

i i i i ii ref i ref
i

h y

f
g

f g i n
g



   

   



  


 



    



      


(28) 

where 1, ,i i iref i n       

and the control law is given by 

 1 1 1

1
QSS n n ref n n n n

n

u f g
g

                                (29) 

C. Stability analysis 

In this section, we use the theorem 2 of exponential 

stability of singular perturbed system to analyze the stability 

of the closed loop system. If both the reduced and the 

boundary layer subsystems are exponentially stable, then the 

combination is also exponentially stable. The following steps 

will be used to prove the stability of the proposed approach: 

1)  Exponential stability of the Boundary Layer subsystem 

      Let us consider the error vector given by  

refz z z                                                                 (30) 

Then, the boundary layer  subsystem (20) becomes: 

1

1 2 1 1

0

T
r

i i

i

z z z k z


 



 
  
  

                                   (31) 

Letting  
t




  yield:  

dz
Az

d
                                                                     (32) 

with A  is defined by 

1 2 3

0 1 0 0

0 0 1 0

0 0 0 1

n r

A

k k k k 

 
 
 
 
 
 
     

 

Using the theorem1, the origin 0z   is exponentially stable, 

and the Lyapunov function is  

1

2

TV z z                                                         (33)   

where TA A Q   and Q  is a matrix defined positive 

2)  Exponential stability of the reduced subsystem 

The stability of the reduced subsystem is provided by 

using the integrator backstepping approach. So the Lyapunov 

function is given by:  

1
2

1

1

2

n

i

i

V 




                                                                (34) 

3)  Global exponential stability  

Using the theorem 2, we can conclude that the origin of 

(1) is exponentially stable. Although all the conditions of the 

theorem 1 are satisfied such that   

 The origin  0, 0 and y 0refz      is an 

equilibrium point for the subsystems (20) and (26) 

  , QSSQ u  has a unique solution 

0 0 0 0refy    
  

Furthermore, as a result of the integrator 

backstepping approach, refy  is a function of   

 Q and its partial derivatives up to order 2 are 

bounded for    in the neighborhood of   

 The origin of the boundary layer system (20) is 

exponentially stable    

 The origin of the reduced system (26) is 

exponentially stable 

IV. ILLUSTRATIVE EXAMPLE 

In this section, the effectiveness of the proposed cascade 

control law is demonstrated using the example of inverted 

cart-pendulum. 

A. Description of the inverted cart-pendulum system 

Consider the cart-inverted pendulum illustrated in fig. 1. 

The cart must be moved using the force  u t  so that the 

pendulum remains in the upright position as the cart tracks 
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varying positions at the desired time. The differential 

equations describing the motion are [27]: 

  2cos sin

cos sin 0

p

p

M m y ml ml u

l y g

   

  

    


  

                   (35) 

where   is the angle of the pendulum, 
py  is the displacement 

of the cart, and u  is the control force, parallel to the rail, 

applied to the cart.  

The numerical parameters of the inverted pendulum system 

are 0.455 , 0.21 , 0.355M kg m kg l    and 
2g=9.81m/s  

M
U

m


py

 

Fig. 1.  inverted pendulum system 

Consider  as the output and let 
T

p px y y      

The inverted cart-pendulum can be written as the system (1): 

   

 

x f x g x u

y h x

  




 (36) 

Where  represents the output, u  is the input, x  is the state-

space vector. Hence, one has: 

 

 
 

 
 

 
 

 

2

2

2 1 1 1
1 12 2

1 1

3

2

2 1 1
2

2
1

1

0

cos sin1 cos
sin cos

sin sin
,

0

1cos sin

sin
sin

x

m lx g x x x
g x x

l M m x M m x
f x g x

x

m lx g x x

M m x
M m x

 
  
   
   

          
  
     
     

   

and  h x   

B. cascade control law 

Applying the proposed approach mentioned in section 4 to the 

system (36) of the inverted cart-pendulum, we obtain the 

following steps: 

 Step1: 

The relative degree of system (36) is 2 4r   . The input to 

be applied for input-output linearization is: 

 
  2

1
2

2 1 1

1

sin
cos sin

cos

l M m x
u lm lx g x x v

x


            

  

(37) 

Thus, the dynamic system becomes: 

            
sin

cos
p

v

lv g
y







 

 




                                           (38) 

and the internal dynamics is given by: 

1

2

cos

p

p

y

y
l


 

 

 
        

  

                                  (39) 

 Step2: The high-gain feedback is given by: 

     2 2
1ref refref

k
v k    


                    (40) 

Under the QSS assumption that 0v    and 

0ref   , sin    and  cos 1  . 

Using the equation (26), the reduced subsystem can be written 

as: 

 

1 2

2 3

3 4

4

p

ref

ref

QSS
ref

y

gg
x

u

 

 


  

 

  
  

       
  
     

                               (41) 

The control objective is to make the output   track a desired 

reference trajectory 
ref  given by the equation (29) and (30) at 

the same time that the displacement of the cart tracks the 

following trajectory: 

  

 0.5 4

0 0

1 cos 0 2
:

0 2 4

2 4

pref

t

t

t t
y

t

e t




 







  


 

 

                          (42)      

The desired displacement (42) has smooth switching at 0t  , 

2t   and non-smooth switching at 4t  . The non-smooth 

switching is introduced to study the behavior of the driven 

dynamics solution in response to a sharp change in the desired 

output. 

 Step3: 

The input ref  and the reference trajectory
ref that stabilize 

the internal dynamics (38) is computed by the integrated 

backstepping approach 

C. simulation results  

The simulation results are presented by fig. 2-4, fig2 show the 

evolution of the angle pendulum    compared to the desired 

one ref . In this figure, indeed, there is a perfect agreement 

between the two trajectories. Fig 3 displays the cart 

displacement py  and the reference signal prefy . Figure 4 

represents the evolution of the stabilizing control law. The 

dynamics of this control signal is quite satisfactory.  

In fact, there is no unacceptable physical overshoot. One can 

also see the reduced response time in which the control law 

stabilizes the controlled variable. The tracking error between 

the reference and the trajectory is reduced. This shows the 

very interesting results given by the developed approach. 
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Fig. 2.  Evolution of the cart displacement   and the reference 

trajectory ref   
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Fig. 3.  Evolution of the cart displacement py  and the reference 

trajectory prefy   
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Fig. 4.  Evolution of the  control signal u  

V. CONCLUSIONS 

In this paper, the problem of tracking control has been 

addressed for a class of nonlinear non-minimum phase 

systems, based on approximation of the non-minimum phase 

system by another singular perturbed system. The proposed 

approach uses the input output linearization technique to 

cancel the nonlinearities of the external dynamics and to 

stabilize the internal dynamics by the integrator backstepping 

approach. A stability analysis of the proposed approach has 

been provided based on the singular perturbation theory. The 

efficacy and the validity of the proposed approach are 

illustrated through an example of inverted cart-pendulum. 
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