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Abstract — In this paper, the exponential synchronization of a 

class of chaotic neural networks with delays using the drive-

response concept is investigated. 

Based on the Lyapunov stability method and the Halanay 

inequality lemma, a delay independent sufficient exponential 

synchronization condition is derived. The synchronization 

condition can be easily verified and implemented. 

Finally, some illustrative examples are given to demonstrate the 

effectiveness of the presented synchronization scheme. 

 

 

Keywords— synchronization, chaos, chaotic neural networks, 

exponential synchronization.  

I. INTRODUCTION 

   A chaotic system is a nonlinear dynamical system, which 

has several properties such as the sensitivity to initial 

conditions as well as an irregular unpredictable behavior. 

Chaos phenomenon has been applied in many disciplines 

such as secure communications, biological science neural 

networks, automatic control, etc [1]. 

  Over the last decade, many new types of synchronization 

have appeared for example: chaotic synchronization [2, 3], lag 

synchronization [4], adaptive synchronization [5], phase 

synchronization [6], and generalized synchronization [4]. 

In 1990, Pecora and Carroll [2], proposed drive-response 

concept for constructing synchronization of coupled chaotic 

systems. The synchronization of coupled chaotic systems has 

received considerable attention [5, 7, 8]. Especially, a typical 

study of synchronization is the coupled identical chaotic 

systems [6]. 

Recently, there is increasing interest in the study of 

dynamical properties of delayed neural networks (DNNs) [9-

13, 21-23]. Most previous studies have concentrated on the 

stability analysis and periodic oscillations of this kind of 

networks. However, it has been shown that such networks can 

exhibit some complicated dynamics and even chaotic 

behaviors. In particular, the introduction of delays into neural 

networks makes their dynamical behaviors much more 

complicated [13-18]. Furthermore, there are few studies in the 

synchronization issue for this class of chaotic neural networks 

with delay [19].  

This work, addresses the synchronization problem of a 

class of chaotic neural networks with delays. Based on the 

Lyapunov stability method and the Halanay inequality lemma, 

a delay independent sufficient exponential synchronization 

condition is derived.  This paper is organized as follows. In 

Section II, we provide a description of chaotic neural 

networks considered in the work and defines the exponential 

synchronization problem of the drive-response chaotic neural 

networks. In Section III we derive a control law to solve the 

synchronization problem, and a sufficient criterion for the 

exponential synchronization is established. In Section IV, we 

present some illustrative examples. Finally, we draw 

conclusions in Section V. 

 

The following notations are used throughout this paper. 

For nx , let  
1

1 2
22

1

n
Tx xx xi

j

 
   
  

  denote the 

Euclidian vector norm. 

 Besides, and for a matrix n nA  , let A  indicate the 

norm of A  induced by the Euclidean vector norm, i.e., 

 
1
2( ) ,max

TA AA  

Where ( )max A  represents the maximum eigenvalue of 

matrix A and T denotes the transpose of a matrix. Note that, 

For all ( )n n  real symmetric matrix A , one has A  is 
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positive definite if and only if all its eigenvalues are positive. 

Furthermore, for all nx  

2 2
( ) ( )min max

TA x Ax A xx    

Where ( )( ( ))min maxA A  represents the minimum (resp. 

the maximum) eigenvalue of matrix A . 

II. SYSTEMS DESCRIPTION AND SYNCHRONIZATION PROBLEM 

    A class of the delayed chaotic neural network considered 

in this paper is described by the following state equations: 

 

( ) ( ) ( ( ))

( ( ( )))

1

x t Dx t Ag x t

r
g x t t JW k k

k


  

  




               (1) 

 

Where ( )x t  is the neural state vector, the matrix 

 , ,...,1 2D diag d d dn and 0di , n nA  ,

 kW wk ij n n



, 1,2,...,k r  are the connection weight 

matrices, ( ( )) ng x t   denotes the neuron activation function 

with (0) 0,g  J  is a constant input to set the desired 

equilibrium point, and ( )tk  is the constant discrete time 

delay. 

Throughout this paper, we make the following assumptions. 

 

(A1) Each function  : , 1,2,...,i ngi    is bounded, 

and satisfies the Lipschitz condition with a Lipschitz constant 

0, . . ( ) ( )i e u v u vg gL Li ii i    for all ,u v . 

 

(A2)  ( ) 0ti   is the delay function for all 1 i n  .         

We will consider the euclidean norm in the whole the paper. 

Let the chaotic system (1) be the drive system and it’s 

unidirectionally coupled copy: 

 

( ) ( ) ( ( ))

( ( ( ))) ( )

1

z t Dz t Ag z t

r
g z t t J u tW k k

k


  

   




                        (2) 

be the response system, where ( )u t denotes external 

control input that will be appropriately designed for a certain 

control objective. 

Let ( ) ( ) ( )t t te x zii i   be the error between the two 

systems. 

 

 ( ) 0e t  , as 0t  means that the drive neural networks 

and the response neural networks are synchronized. 

Therefore, the error dynamics between (1) and (2) can be 

expressed by: 

 

( ) ( ( ) ( )) ( ( ( )) ( ( )))

( ( ( ( ))) ( ( ( )))) ( )

1

e t D x t z t A g x t g z t

r
g x t t g z t t u tW k k k

k
 

     

   




             (3) 

 

Or by the following compact form: 

 

( ) ( ) ( ( )) ( ( ( ))) ( )e t De t Ag e t Wg e t t u t              (4)                          

. 

If the state variables of the drive system are used to drive 

the response system, then the control input vector with state 

feedback is designed as follows: 

 

( ( ) ( ))1( ) 11

( ) ( ( ) ( ))
1

( ) ( )111 1 1

( ) ( )1

( )1

( )

n t tw x z jj jt ju

t nun t tw x z jnj jj

t tw w x zn

t tw w x znn nn n

te

ten

     
      
       

  
  

  
    

 
 

   
  

 



   





                     (5) 

 

Where   is the controller gain matrix and will be 

appropriately chosen for exponentially synchronizing both 

drive system and response system. With the control law (5), 

the error dynamics can be expressed by the following compact 

form: 

 

( ) ( ) ( ( )) ( ( ( ))) ( )e t De t Ag e t Wg e t t e t           (6)                  

 

Definition 1. Systems (1) and (2) are said to be 

exponentially synchronized if there exist constants 1  and 

0 such that for  all 0t   
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( ) ( ) (0) (0) exp( )t t tx xz zi ii i      

 
Moreover, the constant   is defined as the exponential 

synchronization rate. 

 

 

 

III. SYNCHRONIZATION CRITERION 

 

In this section, using the Halanay inequality lemma, we 

establish a sufficient condition for synchronization of chaotic 

systems with delays. 

 

Lemma 1 (Halanay inequality lemma [20]). Let 0   be a 

constant, and ( )V t  be a non-negative continuous function 

defined for  ,   which satisfies for  0t  

( ) ( ) ( ( ))sup 0V t pV t q V st s    
 , where p and q are  

 

constants. If  p > q > 0, then for t > 0 

 

( ) ( ( ))exp( )sup 0V t V s ts      , where  is a unique 

positive root of the equation exp( ).p q    

 

 

Theorem. For these drive-response chaotic neural 

networks (1) and (2) which satisfy assumptions (A1)-(A2). If 

the controller gain matrix   in (5) is real symmetric and 

positive definite, and satisfies 

( ) ( ) ( ) 1min1 0 minL A W di i      , 

Where ( )max1L Lii n   , then the exponential 

synchronization of systems (1) and (2) is obtained. 

 

Proof. Consider the following continuous function: 

1 1 2
( ) ( ) ( )( )

2 2

TV t e t e te t                       (7) 

It can easily be verified that V(t) is a non-negative function 

over  ,  and that it is radially unbounded, i.e. 

( )V t  as   e  .  

Using the definition of ( ( ))g e t  and assumption (A1) 

yields  

 

2 2( ( )) ( ( ))
1

2 2( )
1

22 ( )

ng e t tg eiii

n teLi ii

e tL

 





   

  



 

And    
2 22( ( )) ( )g e t e tL  

 

Let us evaluate the time derivative of V along the trajectory 

of (6) gives: 

 

( ) ( ) ( ( )) ( ( ( ))) ( )T T T TV t De t Ag e t Wg e t t e te e e e     

 

2
( ) ( ( )) ( ( ( ))) ( )mine D e t e A g e t e W g e t t e        

2 2 2
min( ) ( ( )) ( )mine L A e L W e e t t edi          

12 2 2 2 2
min( ) ( ( ( )) ) ( )min

2
e L A e L W e e t t edi           

1 2 2
(2min( ) 2 2 ( )) ( ( ))min

2
L A L W e L W e t tdi          

(2min( ) 2 2 ( )) ( )min

( ( ))max

L A L W V tdi

L W V s
t s t





     



  

              (8) 

Applying Lemma 1 to (8), it can be shown that if 

 

( ) min( ) ( ) 1minL A W di      

 

Then 

( ) ( ( ))exp( )sup

0

V t V s t

s





 

  

                        (9) 

Where 

 

(2min( ) 2 2 ( ))min

exp( )

L A L Wdi

L W

 



    


         (10) 

 

Therefore, V(e(t)) converges to zero exponentially, which 

in turn implies that e(t) also converges globally and 

exponentially to zero with a convergence rate of 2 . 

Therefore, every trajectory ( )tzi of (2) must synchronize 

exponentially toward the ( )txi with a convergence rate of 

2 . 
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IV. APPLICATION 

 

Example 1. Consider a delayed neural network as below: 

 

( )1 0 2 0.11 1

0 1 ( ) 5 4.52 2

( ( )) ( ( 1))1.5 0.51 11 1

( ( )) 0.2 4 ( ( 1))2 22 2

tx x

tx x

t tg gx x

t tg gx x

      
         

      

     
      

         




  (11) 

Where  1 1
T

di , ( ) tanh( )g x xi ii  , 

2 0.1

5 4.5
A

 
 
 

and  
1.5 0.5

0.2 4
W

  
 
  

 

The system satisfies assumptions (A1) with 11 2L L  . 

6.9099A  and 4.0522W  . Fig.1 shows the chaotic 

behavior of the system (11) with the initial condition 

 ( ) ( ) 0.4 0.61 2s sx x      for 1 0s   . 

The response chaotic neural network with delays is 

designed by 

( )1 0 2 0.11 1

0 1 ( ) 5 4.52 2

( ( )) ( ( 1))1.5 0.51 11 1
( )

( ( )) 0.2 4 ( ( 1))2 22 2

tz z

tz z

t tg gz z
u t

t tg gz z

      
         

      

     
       

         




 (12) 

If the controller gain matrix in (5) is chosen as  

   
12 4

4 20

 
 

 
  with eigenvalues 

( ) 10.3431min   and ( ) 21.6569max   , then the 

following inequality:  

10.9621 ( ) min( ) ( ) 11.3431minL A W di      

is satisfied. It follows from the main theorem that the systems 

(11) and (12) have been synchronized with an exponential 

convergence rate of 0.0792. 

0 2 4 6 8 10 12 14 16 18 20
-6

-4

-2

0
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4

6

time

|x
|

 

 
x1

x2

Fig.1. the chaotic behavior of the delayed NN in Example1. 
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Fig. 2. The synchronization error (Example 1). 

 

Example 2. Consider a chaotic neural network (NN) with 

delays as follows: 

1 20
( )1 0 41 1

( )0 12 2 0.1 1
4

2 1.3 0.1( ( )) ( ( 1))1 141 1
( ( )) ( ( 1))2 22 20.1 2 1.3

4

tx x

tx x

t tg gx x

t tg gx x

 
     

         
      

  

 
     

      
    

  



 (13) 

Where     1 1
T

di , ( ) ( 1 1)/2, 1,2ig x x xi i ii      , 
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1 20
4

0.1 1
4

A

 
 

 
 

  

and 

2 1.3 0.1
4

0.1 2 1.3
4

W

 
 

 
 

  

 

 

The system satisfies assumptions (A1) with 11 2L L  . 

20.1589A  and 1.5439W  .Fig.3 shows the chaotic 

behavior of the system with the initial condition 

 ( ) ( ) 0.1 0.11 2s sx x    for 1 0s   . 

the response chaotic  neural network is designed as follows: 

1 20 ( ( ))( )1 0 141 1 1
( ( )( )0 1 22 2 20.1 1

4

2 1.3 0.1 ( ( 1))14 1 ( )
( ( 1))220.1 2 1.3

4

tgt zz z

tgt zz z

tg z
u t

tg z

 
       

           
        

  

 
   

     
   

  



           (14) 

 

If the controller gain matrix in (5) is chosen as 

24 6

6 40

 
 

 
 with eigenvalues ( ) 22min    

And ( ) 42max   ( ) 21.6569max   , then the 

following inequality: 

 

  

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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0.6

0.8

1

1.2
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time

|e
|

 

 

e1

e2

 
Fig. 4. The synchronization error (Example 2). 

 

V.CONCLUSION 

 

    This paper has presented a new sufficient condition to solve 

the exponential synchronization of a class of delayed chaotic 

neural networks. The proposed sufficient condition is derived 

primarily by the Halanay inequality lemma rather than 

through the use of the Lyapunov functional. The result has 

indicated that the real symmetric and positive definite 

controller gain matrix    is designed to achieve 

synchronization. 

 

21.7029 ( ) min( ) ( ) 23minL A W di      

is satisfied. It follows from the main theorem that the systems 

(13) and (14) have been synchronized with an exponential 

convergence rate of 0.3889. 

0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

15

time

|x
|

 

 

x1
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Fig. 3. The chaotic behavior of the NN(Example2). 
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